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While more and more inexpensive devices with embedded sensors are introduced to
improve our living, the challenge is to process and analyze large datasets they collect for
identification of vital events and activities. Datasets from wearable motion sensors are used
to detect and monitor human fall and activities of daily life (ADLs). Existing methods for
detection of fall and ADLs from motion datasets employ feature extraction and machine
learning, but they have high classification errors. Thus, they produce false alarms for fall
and wrong identifications of ADLs. Similar to motion dataset problem, detection of in-
voluntary muscle activities from large EMG datasets (collected from spinal cord injured
individual) is a challenging task. Recent studies have developed locations identification
algorithms for spasms, motor units, and contractions on individual channel of the EMG
datasets. It is important to know how and when repetitive muscle contractions happen
in multiple muscles at the same time and is there any any reason for this involuntary co-
activity.

We demonstrate that the k-means clustering algorithm can semi-automatically extract
training examples from motion data. We also propose one- and two- layer classification
networks using neural networks and softmax regression. Moreover, we propose a distance

measure, called Log-Sum Distance, for evaluating difference between two sequences of
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positive numbers!. We use the proposed Log-Sum Distance measure to develop algorithms
for recognition of human activities from motion data. The sequences of m positive numbers
for Log-Sum Distance are residual sum of squares errors produced from modeling m mo-
tion time-series with multiple linear regression method. To reduce incorrect classification
we define a threshold test and use it in our proposed novel algorithm. Log-Sum Distance
measure also has been employed to identify the locations for repetitive muscle contractions
in one or multiple channels of EMG recordings. We also propose a method to identify
the muscle that triggers the first contraction in an identified region. We extract features
from EMG data using wavelet filter and decomposing co-variance matrix for eigenvector.
Experiments with fall detection, ADLSs recognition and monitoring, and repetitive contrac-
tions identification methods proposed here show very high accuracy rates with different
benchmark datasets. The proposed use of threshold values for classification of activities
decreased incorrect classification rates. In summary, this work introduces novel methods
and the state-of-the-art development and training of wearable devices for fall and ADLs
recognition and monitoring. It also extends the involuntary muscle activities identification

across multiple channels.

'Prof. Kamal Premaratene brought to our attention that the proposed measure can be
derived from Bregman divergence [1].
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CHAPTER 1

Introduction

1.1 Motivation

Different types of sensors are promising us secure and better everyday living conditions
[3]. As more and more sensors are introduced, larger volumes of sensor datasets have to be
processed to extract essential information from them [4]. It is challenging to analyze and
discover information from large datasets efficiently with microcontrollers in the devices. In
this dissertation, our goal is to develop algorithms for extracting information from sensor
datasets that are useful for improving daily human living.

To be more specific, we address the followings: (i) How can daily living be improved
using sensor information? (i7) How well can existing state-of-the-art learning models iden-
tify patterns from sensor datasets for classification of activities in everyday living? and (4i7)
How can the performance of existing algorithms for extracting information from large vol-
ume of sensor datasets can be improved?

This dissertation quest to answer the above questions. Our goal is to find methods and
algorithms for extracting information from large datasets collected by sensors embedded in

wearable devices for monitoring activities to improve daily living.
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1.2 Overview and Scope of the Work

In this dissertation, we present works related to sensors data analysis to identify pat-
terns. Sensors are at the heart of the modern automation processes and health care systems.
In this research, we developed and tested novel algorithms for human activity of daily liv-
ing (ADL), fall, and posture detection and monitoring. These algorithms were evaluated
with motion sensors datasets from several sources. We also used novel algorithms to iden-
tify repetitive muscle contractions regions where muscle contraction is present in one or
multiple multiple channels of electromyographic (EMG) datasets for spinal cord injured

(SCI) individual.

1.2.1 Fall and Posture Detection from Motion Senor Datasets

Inexpensive wearable motion-sensing devices have shown great promise for fall detec-
tion and posture monitoring [5]. But two major problems still exist and have to be solved for
making them acceptable for regular use: ¢) a framework for the development of firmware,
and 17) software for detection of fall and monitoring postures. To solve the first problem,
we design and implement a generic framework for developing firmware for wearable de-
vices. To address the second problem, we have found that from motion data the k-means
clustering algorithm can semi-automatically extract training examples for machine learn-
ing algorithms. We use extracted examples to train and evaluate several one- and two-layer
classification networks ¢) to monitor non-fall activities and i:) to detect fall events. The
proposed classification-networks are combinations of neural networks and softmax regres-

sion.
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1.2.2 Distance-Based Novel Algorithm for Detection of ADLs

For detection of human activities using motion data many techniques employ feature
extraction and machine learning. The techniques we use in the previous section are based
on existing example-based machine learning techniques. A drawback of these techniques
is that any input will be classified into one of the predefined classes. Here in this project,
we propose a distance measure, called Log-Sum Distance, for computing distance between
two sequences of positive numbers. We use the proposed Log-Sum Distance measure to
develop algorithms for recognition of human activities from motion data.

Log-Sum distance algorithm measures element wise distances between two sequences
of positive numbers. The distance measured by this algorithm is non-negative. The se-
quences of m positive numbers used in our algorithm are residual sum of squares errors
produced from modeling m motion time-series with multiple linear regression method. To
reduce incorrect classification we introduce a threshold test and use it in our proposed novel
algorithms. Also, we define an optimization function and use it for computing optimal val-

ues for thresholds.

1.2.3 Repetitive Muscle Contractions Detection in EMG Recordings

Paralyzed SCI patients can get affected by involuntary muscle activities in their para-
lyzed muscles. [6,7]. Repetitive muscle contractions are common in paralyzed SCI patients
and it can occur throughout the day and night. Sometime this involuntary contractions are
manageable by the individual, but in other times it interferes with individuals daily liv-
ings [8,9]. By analyzing long-term EMG recordings of the paralyzed muscle, it might

be possible to measure the muscle contraction frequencies, durations, co-activity and also
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their severity. Different methods have been applied to EMG recodings for detection of
contractions with varying degree of accuracies [10-15].

In this work, we use the Log-Sum Distance measure to identify regions where it indi-
cates the presence of repetitive muscle contractions or EMG bursts in one or more of the
five different channels in long-term EMG recordings. This five channels of EMG is col-
lected from five different leg muscles of paralyzed individuals. In one or more of the five
different leg muscle’s EMG data, we identify involuntary muscle contraction which is indi-
cated by periodic burst of EMG signal. Then we mark the start location of the EMG burst
(if exist) in each individual leg muscle. By comparing the start time in an identified region,
we can identify the muscle that started the first EMG burst. To the best of our knowledge,
no studies have reported methods that identify regions where more than one muscles show

existence of repetitive muscle contractions.

1.3 Contributions of this Dissertation

In summery, key contributions of this dissertation are:

e We have developed a method for semi-automatic extraction of training examples
from motion sensors readings. We used our technique to extract training examples
from motion data, and used these training examples to train one- and two-layer clas-
sification networks to detect fall and ADLs. Extensive evaluations of the trained
networks demonstrated that two-layer networks achieved perfect detections of fall

events and identification of ADLs.

e To measure distance between two sequences of positive numbers we made an inde-

pendent finding of generalized Kullback-Leibler divergence (KL-divergence). We
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named it Log-Sum Distance. It is possible to drive this Log-Sum Distance from
Bregman Divergence!. We derive Log-Sum Distance measure from Bregman diver-
gence. We also establish relation with the proposed Log-Sum Distance measure and

KL-divergence.

e We have used Log-Sum Distance measure to develop algorithms for recognition of
ADLSs from motion data. In our ADL recognition algorithms we introduced threshold
parameters for reducing incorrect-classification rates. Machine learning technique

was used to find optimal values of the threshold parameter.

e We also used Log-Sum distance measure to identify regions which indicate the pres-
ence of repetitive muscle contractions in one or more of the five different channels
in long-term EMG recordings. Moreover, we developed a method to identify mus-
cle that starts the first contraction in the identified region and it might has initiated

muscle contractions in that region.

1.4 Overview of Chapters

The rest of this dissertation is organized as follows. Chapter 2 provides a brief re-
view of previous work related to our research. In Chapter 3, we present our method for
semi-automatic extraction of training examples from motion data. To show efficacy of our
semi-automatic training example extraction method, we extracted training examples from
motion datasets of fall events and ADLs. We used these training examples to train one-
and two-layer classification network for identification of fall events and ADLs. Extensive

evaluations of the trained demonstrated that two-layer networks correctly identified all fall

'Prof. Kamal Premaratene brought to our attention that the proposed measure can be derived from Breg-
man divergence [1]
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events and classified ADLs. In Chapter 4, first we present our Log-Sum Distance mea-
sure, and then a novel algorithm for identification of ADLs. We also present several other
algorithms for comparing performance of the new algorithm. Finally, we provide exten-
sive evaluation results using two different datasets. Performance of the Log-Sum Distance
based ADL identification algorithm motivates us to use it to detect repetitive muscle con-
tractions regions where contractions might be present in one or more channels of long-term
EMG recordings. We present the algorithms for locating repetitive muscle contractions in
Chapter 5. Finally, in Chapter 6, we present a summary of our novel contributions, and

possible future directions for continuing the work.
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CHAPTER 2

Literature Review

2.1 Introductory Remarks

In this chapter, we briefly review previous work directly related to this dissertation, and
also some concepts that are related to our research. Section 2.2 reviews related previous
works on human activity recognition and monitoring and fall detection. In the beginning of
Section 2.3, we discuss some fundamental concepts related to muscle spasm. After that we
discuss about the current state-of-the art spasm study literatures using electromyographic

(EMG) data.

2.2 Human Fall, Posture, and Activity Recognition and
Monitoring

The availability of inexpensive miniature micro-electromechanical system (MEMYS) is
making a revolution toward wearable devices [4]. And Motion sensor is in the heart of
wearable devices. A motion sensor may include one or more of the following: (i) ac-
celerometer, (ii) gyroscope, and (7iz) magnetometer [5]. These motion sensors are em-

bedded in such devices as cellphone, watches, toys, tablets, cars, etc. As these sensors are

7
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very widely used in modern systems, researchers are using motion data to enhance many
different everyday activities, including daily activity monitoring [5, 16].

Fall is a major cause of injury to the elderly population [17]. The Centers for Disease
Control and Prevention (CDC) reported, “In 2010, falls among older adults cost the U.S.
health care system $30 billion in direct medical costs, when adjusted for inflation.” By
2020 it is expected to reach $67.7 billion [18]. Availability of inexpensive motion sensing
devices have enabled researchers to study their potential application to assess fall risk and
monitoring activities of daily livings (ADLs). Earlier studies demonstrated feasibility of
various miniature wired or wireless devices, and recent studies have focused on extracting
knowledge motion data. Results from past studies have proven that hardware for MEMS
sensor based intelligent devices to (i) assess fall-risks, (ii) monitor ADLs, and (iii) identify
fall events have reached maturity and can be assembled from off-the-shelf hardware.

The major steps for monitoring ADLs and recognition of fall events using wearable
motion sensors are: (i) data collection, (ii) data preprocessing, (iii) feature extraction, and
(iv) fall or activity identification [16]. Challenges are still exist in feature extraction and
activity detection steps. Accuracy of the existing systems depends on many factors in-
cluding, number of devices, number and type of sensors, and the recognition method used.
With very few exceptions, a trained system classify an input data into one of the trained
activities. A better and more desirable system would reduce incorrect recognition, maybe
by having a “not sure” state.

Based on the platforms used, fall and activity detection methods can be broadly catego-
rized into two groups: (¢) inexpensive wearable embedded devices, and (z¢) smart-phones.
Different feature extraction and learning methods have been used in different researches to

identify and monitor fall and/or daily activities. On the other hand, three major research ar-
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eas for sensor-based activity detection systems are: (¢) monitoring activities of daily living

(47) sport and training (z¢7) health care.

2.2.1 Fall Detection Using Wearable Sensors

Ojetola et al. [19] report a method for detecting four fall events — forward, backward,
right, and left — using readings from both accelerometer and gyroscope. Their approach
utilizes a decision tree to learn and classify falls and ADLs. It identified fall events with
81% precision and 92% recall rate. A system to detect events that may cause trauma and
disabilities was proposed in [20]. It used readings from MEMS accelerometer embedded
in a wearable wireless device. They use SVM for the classification of different events.

The method in [21] uses data from tri-axial accelerometer and gyroscope sensors, em-
bedded in a necklace, for classifying the behavior and posture of human subjects. Their
method distinguishes between ADLs and falls, with 80% or higher sensitivity and 100%
specificity. Their experiments include both normal ADLs such as standing, sitting in the
chair or floor, laying, walking, running, going upstairs/downstairs, and bending, as well
as abnormal events such as falling forward, backward, leftward, rightward, and fall on the

stairs.

2.2.2 Posture and Activity Recognition and Monitoring Using Wear-

able Sensors

Bao and Intille [22] used five small-biaxial wire-free accelerometers that were attached
on the left bicep, the right wrist, the left quadriceps, the right ankle, and the right hip of
the subjects for collecting motion data. They used motion data for recognizing 20 activi-

ties, including walking, riding elevator, strength training, and bicycle . They evaluated the
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performance of a decision table, instance-based learning, a decision tree, and naive Bayes
classifiers. The results revealed that the decision-tree based method performed best with
84% accuracy. Similar efforts have been reported to detect human motions using motion
tracking (see [23-27]).

In [28], high-level fuzzy Petri-net based systems were proposed and evaluated for the
analysis and detection of normal human actions such as sitting-down, squatting, walking,
running, and jumping as well as abnormal events such as falling forward, backward, side-
ways, and vertical. They reported 94% accuracy for fall-detection. However, the proposed
system could not accurately detect some complex situations and movements such as falling
down from stairs, multiple collisions, or temporal unbalanced motions.

Ward et al. [29] developed a framework for continuous recognition of wood work-
shop activities from sound data (sampled at 2kHz) and 3-axis accelerometers (sampled at
100Hz). Microphones and 3-axis accelerometers at wrist and upper arm of the body were
used to collect data. Sound intensity from two different locations have been used to sep-
arate activities from continuous data stream. After that, activity detection is done on the
separated activity data segments using Linear Discriminant Analysis (LDA) on the sounds
data and Hidden Markov Models (HMMs) and Logistic Regression (LR) on the accelerom-
eters data. They reported recognition accuracy of 98%, 95% and 87% for user-dependent,
user-adapted, and user-independent categories, respectively.

Yang et al. [30] developed a distributed recognition framework to classify continuous
human actions using wearable motion sensors. Their wearable devices have sensors for
3-axis accelerometer and 2-axis gyroscope. They attached five sensors on 5 different loca-
tions of human body that forms a wireless sensor network (WSN) and collected data from

these devices. They have used a mixture subspace model for training.
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Their experimental evaluations achieved on an average 93.46% accuracy for all ac-
tivities. They have also create a publicly available wearable action recognition database
(WARD). This database has data from twenty different subjects for thirteen activities.

The method in [21] used data from a wireless device attached to a necklaces. The
device has 3-axis accelerometer and gyroscope sensors. Their method identified ADLs
and falls, with 80% or higher sensitivity and 100% specificity. Their experiments include
both normal ADLs such as standing, sitting in the chair or floor, laying, walking, running,
going upstairs/downstairs, and bending, as well as abnormal events such as falling forward,
backward, leftward, rightward, and fall on the stairs.

Methods presented in [31] are using data from 12 Orientation Sensors from ETH to
monitor kinematic changes evoked by fatigue from running. These 12 Orientation Sen-
sors captured full body movement, while 21 subjects with different skill level and running
techniques, performed many running activities in the outdoor tracks and on the treadmills.
They identified parameters that characterize fatigue during running. They also discovered
that treadmill running is not always the same as the outdoor running.

In the health care domains wearable sensor devices to monitor patients at home or at
hospitals are being investigated. Mariani et al. [32] have developed a small on shoe wear-
able device with 3-axis accelerometer and 3-axis gyroscope for gait and turning assessment
of patients with Parkinson’s disease (PD). They have used Spatio-Temporal Analysis on the
both 3-D orientation and velocity. Their evaluation of the device on ten different PD pa-
tients and ten different age-matched non-patients identified PD accurately.

Mehta et al. [33] has developed a voice health monitoring system using wearable
sensor and smartphone. They have put an wearable accelerometer on the neck skin above

the collarbone and used smartphone to collect data. They have measured vocal function
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and airflow using those sensor reading. Their smartphone based GUI can do the analysis

and help the user to monitor vocal health.

2.2.3 Research using Smart-phone’s Motion Sensors

There is an increasing interest in using smart-phones to detect activities related to health
care. Using only readings from an accelerometer of a smart-phone, five human actions —
walking, running, standing up, sitting down, and jumping — were analyzed in [34]. They
compared the acceleration characteristics of these actions with those of three different fall
events to infer the direction of a fall. The method recognizes a fall activity when a predeter-
mined set of conditions are satisfied. However, the method do not provide any prediction
or hint that a fall could occur in the near future.

It was show in [35], that the sensors in the smart-phones from different manufactures
record significantly different range of values for identical tasks. To overcome this problem,
they trained a SVM with extracted features from raw accelerometer readings and the direc-
tional changes of the constraining force exerted on an accelerometer to detect fall events.
They compared these events to non-fall activities such as walking, running, jumping, and
some actives which resembles falls such as sitting down on a chair. Their method detected
fall events with an accuracy of 84.8%.

Methods that detect both simple and complex activities using readings from an ac-
celerometer and a gyroscope of an Android smart-phone were studied in [36]. Simple
activities include biking, climbing stairs, driving, running, sitting, standing, walking, and
the phone-not-on-the-person. Complex activities include cleaning, cooking, medication,
sweeping, washing hands, and watering plants. Both simple and complex activities were

combined together for recognition. Six different classifiers — multi-layer perceptron (MLP),
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naive Bayes, Bayesian network, decision table, best-first tree, and K-star — were trained us-
ing the same set of features extracted from the datasets. They obtained 93% accuracy for

simple activities (with MLP), but only 50% accuracy for complex activities.

2.2.4 Different Feature Extraction Methods

Preprocessed data are used for feature extraction. Feature exction methods are broadly
grouped into three categories: (7) time-domain, (77) frequency-domain, and (z27) others [16,
37]. The time-domain methods include (a) statistical feature extraction [31,32,38], (b) signal-
amplitude normalization [21, 28], and (c) structure detectors [16]. Fast Fourier Trans-
form (FFT) and Wavelet transforms are examples of frequency domain feature extrac-
tion methods [22,29,39-41]. The other methods include Principal Component Analysis
(PCA) [30], Auto-regressive Method (AR) [40], K-Mean Clustering [42], and Linear Dis-

criminant Analysis (LDA) [29,30].

2.2.5 Different Learning Methods

A large number of training or learning methods have been used to train human-activity
monitoring and recognition systems [16]. They include decision tree [22, 26, 39, 43],
Bayesian [22,26,36,39,43], k-nearest neighbor [44], neural networks [26], support vector
machines [24,34,38,45,46], fuzzy-logic [28], regression methods [2,43], softmax regres-
sion [42], Hidden Markov Models [29, 47], and combinations of two or more of these
methods [42,48].

A standard method for testing performance of a trained model is k-fold cross valida-
tion [49]. In this method available examples are (randomized and) partitioned into approx-

imately k equal-size subsets. Then (k — 1) of these k subsets are used for training and the
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remaining subset is used for testing. The process is repeated k times, once for each subset

and the results are averaged for estimating performance of the trained system.

2.3 Spasm Identification using EMG Recordings

Spasm is inventory muscle contraction happen in the paralyzed muscles of spinal cord
injured person [6-9]. There are three main types of spasms [10]:(7) Unit, (iz) Tonic, and
(7i7) Clonus. Spasms are common in SCI patients and it can occur throughout the day
and night. It is often manageable by the individual, but sometimes it can interfere with
regular activities [6, 7]. Researchers use EMG recordings to identify spasms, its frequency
of occurrence, its severity, and spasticity symptoms.

Among three different types of spasms, clonus spasm is a very well known type of
involuntary muscle contraction for SCI patients. Over the last few decades, a number of
studies have been focused on clonus muscle spasm that measures clonus location, overall
clonus duration, contraction frequency, and contraction duration [10-12]. In the previous
studies to detect and analyze clonus, EMG processing has been done over one type of
muscles at a time [10, 11, 14]. Different EMG processing methods have been applied for
clonus spasm detection with different varying accuracies [10-15].

EMG signal analysis is a very well know way to analyze spasms. Researchers use dif-
ferent techniques to process EMG recordings to identify different kind of spasms [8,50,51].
Rectification and integration of signals or root mean square values to extract information is
a very popular method in EMG analysis [10, 11]. This time domain data analysis process
is associated with the amplitude of the signals and one of the very conventional way of
EMG signal data analysis. To analyze EMG recording in frequency domain Fourier trans-

formation is the most well known way. Fourier transformation convert the signal from time
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domain to frequency domain. On the other hand, short-term Fourier transforms (STFTs)
and wavelets process the data in both time and frequency domain. The morlet wavelet
is very popular for EMG data analysis. It is scaled linearly when the time resolution of
events is unknown. But researchers use the non-linear scaling of wavelets when they want
to locate the timing of events in the EMG signals [11]. Vincent Von Tscharner [52] devel-
oped the technique of scaling wavelets non-linearly and it is widely utilized in the current
algorithm developed for analysis of EMG during clonus spasm.

Chaithanya et al. [11] developed algorithm to automatically detect contractions during
clonus in long-term EMG records for per muscles channel. They have used the non-linearly
scaling Morlet wavelet filter to envelope the EMG (74.8 - 193.9 Hz). They have identified
contractions during clonus, marking start and end times, contraction intensity using root
mean square EMG, and EMG duration.

Polynomial regression has been used by Takada and Yashiro to detect EMG pattern for
spasm [13]. This method requires calculation of steady state parameters and equations for
each EMG pattern. Vannozzi et al. [14] has develop a method that use wavelet transforms
to detect the sudden changes in EMG that occur at the start and end of a contraction.

In [10], Jeffrey et al. has proposed and evaluated rule based algorithm and time-
frequency methods that can classify different types of spasm events in long-term EMG
recording. They have done their experiment with seven different subjects each with eight
channels of EMG recordings. And their algorithms works one channel of EMG recording

at a time.
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2.4 Conclusion

In this chapter we have presented a brief literature review. We also have introduced
basic concepts that are used in the rest of the proposed work. In Section 2.2, we have
discussed about current state-of-the art research in human fall detection, and posture and
activity identification and monitoring. After that in Section 2.3 we have introduced few
necessary concepts to understand involuntary muscle contractions and spasms. Then we
have presented a brief overview of current muscle spasm identification research. In the fol-
lowing chapter, we demonstrate that k-mean clustering algorithm can semi-automatically
extract training examples from motion sensors data. And we also present one and two
layers of classification networks for fall detection and posture monitoring from extracted

features of the motion sensors data.
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CHAPTER 3

Human Fall Detection And Posture Monitoring

In the previous chapter we provided a brief review of some fundamental concepts and
current state-of-the-art research related to this dissertation. In this chapter we provide our
methods, experiments and results of human fall and posture detection from motion sensor
readings. This work uses k-mean clustering algorithm for feature extraction and current
state of the art classification algorithms: softmax regression and neural networks for iden-

tification and monitoring of human fall events and activities.

3.1 Introductory Remarks

We have presented a brief review of human fall and posture detection in Section 2.2. Re-
maining major challenges include automatic development of (z) extracting features specific
to applications and users, and (2) software modules for making intelligent decisions uti-
lizing features extracted from motion data. For example, if a device with a 9-axis MEMS
motion sensor is used for identifying four fall events — fall forward, fall backward, fall
left, and fall right — the device must have firmware modules to collect motion data, to

preprocess motion data, and to extract sufficient features from the preprocessed data for the
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identification of the fall events. Also, the device must have a software module that takes
the extracted features as input and correctly classifies the four fall events.

Next, we discuss the approaches and tools we have used to solve this fall detection and
posture monitoring process. We also demonstrate that the clustering algorithm can semi-
automatically extract training examples from motion data. Moreover, we present how to
train and evaluate several one- and two-level classification networks to monitor non-fall
activities and to detect fall events. The proposed classification-networks are combinations

of neural networks and softmax regression.

3.2 Framework and Motion Sensors

This project used the pEnergia (pronounced as: “micro—Energia”) framework for data
collection and online monitoring. The framework provides generic functionalities to de-
velop applications or rational agents on embedded devices that sense and actuate using
add-on boards. The framework includes: (7) tools to develop modules and representations
that execute on the micro-controllers or offline, (z¢) methods to access functionalities for
physical robots, and (#:7) a real-time visualization system. This framework is lightweight,
flexible, and consumes minimum memory and computational resources. This framework
is available from the following web site: http://muenergia.saminda.org.

We have assembled a wireless sensing-device with a Tiva C Series TM4C123G micro-
controller board, and three booster packs — a Sensor Hub BoosterPack for sensing 9-
axis motion, a CC2533 BoosterPack for wireless networking, and a Fuel-Tank Booster-
Pack for power. We also assembled a wireless data collection device with a Tiva C Series
TM4C123G micro-controller board, and a CC2533 BoosterPack. These two devices were

networked to create a wireless sensor network (WSN) for collecting motion data from hu-
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Figure 3.1: (a) a wireless sensor device (assembled from a Tiva C Series TM4C123G LaunchPad, a Sensor
Hub BoosterPack, a CC2533 BoosterPack, and a Fuel Tank BoosterPack) attached to the back of a human

subject; and (b) the same device configuration was used on the back of a NAO humanoid robot [2].

mans (see Figure 3.1). The data collection device is connected to a computer with a USB
cable for logging the data. This micro-controller board is programed with pEnergia frame-

work.

3.3 Data Collection from Subjects

As shown in Table 3.1, this study has considered four types of fall events: 1) fall for-
ward (FF), 2) fall backward (FB), 3) fall left (FL), and fall right (FR). We have used the
following seven activities:1) walk forward (WF), 2) walk backward (WB), 3) walk left
(WL), 4) walk right (WR), 5) marching (MR), 6) rotate counter clockwise (RC), and 7) ro-
tate clockwise (RA) as non-fall activities.

We have setup the framework with our micro-controllers and enabled the motion track-

ing device to sample at 20ms, which is equivalent to a S0H z sampling rate. The motion
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Table 3.1: Activities and Fall Events and their abbreviations

Activity Abbreviation || Activity Abbreviation

Fall Forward FF Fall Backward FB

Fall Left FL Fall Right FR

Walk Forward WF Walk Backward WB

Walk Left WL Walk Right WR

March MR Rotate Clockwise RC
Rotate Anticlockwise RA

tracking device outputs nine values. Three-axis accelerometer readings are in meter per
square second (m/s?), 3-axis gyroscope readings are in radian per square second (rads/s?),
and 3-axis magnetometer readings are in Tesla (7"). For experiments and results reported
here, we have excluded the magnetometer readings. Therefore, our input data vectors are
in R% and they consist of accelerometer and gyroscope values. The plots of the raw mo-
tion datasets for fall forward and walk forward events are shown in Figures 3.2a and 3.2b,
respectively. They demonstrate the complex nature of these time series, and indicate the
difficulty of extracting features from them that are useful for training as well as monitoring

of events and falls.

3.3.1 Identify and Adjust for Missing Data Points

Some data packets may be lost during transmission because of noise. We numbered
each sensor reading sequentially and at the receiver the lost data points were identified from

this number and replaced using linear interpolation. Since only very few data points were
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(a) Motion dataset from fall forward of a human subject.
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(b) Motion dataset from walk forward of a human subject.

Figure 3.2: Fall and walk forward motion datasets. The accelerometer (&, y, 2) and the gyroscope (9;, Oy,

6.) readings are shown with the respective traces.

lost and results obtained after linear interpolation was excellent, we did not experiment

with other interpolation methods.
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3.3.2 Noise Filtering

After checking for missing data and adding interpolated values for the lost data, high
frequency noise was removed using a moving window averaging technique. We used a
window of 20 consecutive samples, which amounts to 400ms, and obtain the average value.
Then the window was moved by ten samples and average value was computed again. The
process was repeated for each time-series of all motion datasets. Thus, we have allowed
ten samples to overlap between windows. Selection of an overlap of ten samples is based
on our empirical observation that a transition from non-fall event to a fall event takes about
500ms. Thus, averaged values will preserve transitions from non-fall events to fall events.
We have used the preprocessed time-series as the input to our automatic training example
extraction method.

In the next section, we propose a method for the semi-automatic extraction of training
examples from motion datasets. These examples are used to train a device/system that

identifies desired events.

3.4 Semi-Automatic Extraction of Training Examples

The barrier for collecting motion data is very low, if any. However, detection and
identification of non-fall activities and fall events from motion data have remained an ac-
tive area of research, as can be seen from the large number of recent publications [4, 5].
One of the main unsettled issues is how to characterize features from motion data that
can be extracted easily for training and monitoring. In this section, we describe a method
that semi-automatically extracts feature vectors that characterize non-fall activities and fall

events.
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The flow chart of the method used for extracting training examples is shown in Fig. 3.3.
All the collected datasets were annotated as described next. If a dataset was for simulated-
fall events, the dataset was treated as a 6-dimension vectors for clustering them into two
clusters. We explored K-Mean and Gaussian Mixture clustering techniques. For complete-

ness a brief description of each is provided next.

Motion Datasets for Fall
and Non-Fall Events

Y

Yes

No

Create Two-Class

Extract Training

Clusters Examples
Identify Event
Gather Annotated

Locations and
Extract Training
Examples

Training Examples

Figure 3.3: Flow chart of an algorithm for semi-automatic extraction of training examples

3.4.1 K-Mean Clustering

K-mean clustering [53] aims to partition a set of n observations into k clusters. Each
observation is assigned to the cluster with the nearest mean. Let {(x(V)}?_, be the set of n

observations, where each observation x(*) is a d-dimensional real vector and is assigned to
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one of the k sets S; € S, for 1 < j < k so that within-cluster sum of squares is minimized.

Formally,

k
win 3 3 — P

i=1 x€ES;
where p; is the mean of points in S;.

For our case, we set k = 2 for extracting training examples for fall events. Data samples
grouped into two clusters and each cluster was annotated. Figures 3.4 shows annotated
time-series for a fall-forward datasets. As can be seen for our fall-event datasets, the choice

of k = 2 is the optimal value that clearly separated the duration of the fall.
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Figure 3.4: Semi-automatic annotation of falling-forward dataset.

3.4.2 Multivariate Gaussian Mixtures

Gaussian mixture clustering is a generalization of k-mean clustering, where each cluster
is assumed to be from a Gaussian distribution parametrized by u; and ;. The mean

vector u; represents the center of the cluster ¢. Usually, an expectation maximization (EM)

ntifies the clusters. Compared to the clustering results obtained
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from k-mean, the mixture models did not provide an optimal separation for our fall datasets.
Therefore, we omit results for the Gaussian mixture clustering, and present results for k-
means algorithm only.

Our method is relatively simple and easy to implement in practice. We have used the
samples from the preprocessing stage, and subjected them to k-means algorithm. We have
empirically found that the minimum cost separation is achievable when we have two clus-
ters. This intuitively supports the fall-event datasets as well. For example, if we consider
the falling-forward event, there is a window in which the fall triggers and the subject falls
to the ground. Therefore, the signature of this process differs from the states before the
process starts (e.g., standing) and the states after (e.g., laying on the floor). Therefore, for
each fall-event dataset, there exists a duration in which the fall triggered and continued.

Figures 3.4 shows plots and annotations of our semi-automatic annotation of falling-
forward dataset, respectively. The subject in this experiment simulated a fall froward. After
a fall, the subject immediately gets up and repeats the process. The “+” segments show the
annotated fall events, while the “x” segments show the non-fall events. We have observed
that there is a clear separation of the events with two clusters. Each segment has between
15 to 20 consecutive data points. Each fall-event triggers towards the end of the preceding
non-fall data points and continues into the beginning of the fall data points; this is the
transition zone of a fall event.

For visualization of 11 sets of training examples, a sample t-SNE (t-distributed stochas-
tic neighbor embedding) [54] projection is displayed in Fig. 3.5. In this projection, the 4
fall events (numbered 1 through 4) show a clear separation from each other and all 7 non-

fall events. Although Fig. 3.5 does show as good separations for non-fall events, the results,
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reported in Section 3.7, show that the separations are for good enough for classification of
the events with 100% accuracy.

Since we are interested in the signatures of the fall events, we have annotated all the
samples that belong to “a” cluster as the fall data. In general, the k-means clustering finds
a local minimum. Moreover, the cluster assignments may vary depending on the initializa-
tion. Therefore, after we have obtained the data belongs to two clusters, we only have to

manually provide the semantics of the cluster centroid.

e o T

Figure 3.5: Visualization of 11 sets of training examples using t-SNE projection. In this projection, the 4 fall

events (numbered 1 through 4) show a clear separation from each other and other 7 non-fall events.

3.5 Offline Learning and Predicting Algorithms

Our activity monitoring and identification requires to learn and to predict beliefs of
multiple discrete hypothesis. This includes learning and predicting dichotomies such as
falling forward and backward, falling events and non-falling events, different types of

falling events,.and.so forth. Therefore, we have used multi-class classification networks
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to rationally answer the question we have posed. We learn the classifiers offline from the
training examples extracted according to the methods presented in Section 3.4. This section
explains the classifiers that we have considered in our experiments and their configurations.

Using our semi-automated training example extraction method, we have created : € N
training examples {(x¥, y()}™  such that x € R" and y € {0, 1}*, where k € N is the
number of dichotomies. Each training example belongs only to one class and y uses the

1—-of—k coding scheme.

3.5.1 Softmax Regression Algorithm

Next classification network is based on Softmax regression [53]. In this model, given
an example x, it will determine the probability, P(y|x), for each y = 0,...,k — 1. The
input is appended with a constant bias term, xy = 1, therefore, x € R7. The model uses
a parameter matrix W € R7**, and the output vector, a = WX, is passed through the
Softmax activation function z(a) = %, which represents the probability mass function

P(y|x). We have used the regularized cross-entropy cost function as our objective function,

l(x)=—y.lnz + %WW (3.1)

where ) is the regularization parameter, and “.” represents the scalar dot or Frobenius
product. We have used L-BFGS [55] to learn the parameter vector W.

We trained and tested two networks with the softmax regression algorithm. In the first
case, we trained a one-layer network with 11 binary outputs, one for each fall or non-fall
events. In the second case, we trained a two layer softmax regression network. The top
layer network was trained with 2 binary outputs to distinguish between fall and non-fall

events (see Fig. 3.6). The bottom layer has two sub-networks: one to identify fall events
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Training Set for Training Set for
All Activities All Activities
Softmax Regression Neural Network

¢ ¢ Softmax Regression

Fall Event Mon-Fall Event
Fall Event MNon-Fall Event

Figure 3.6: Layer 1 learning modules. Examples are classified into Fall and Non-Fall events. The left-side
Figure is using Softmax Regression model. The Right-side Figure is a hybrid of Neural Network and Softmax

Regression model.

and has 4 binary outputs, the other to identify non-fall events and has 7 binary outputs. Each
sub-network was trained separately. Figure 3.7 shows a block diagram of a subnetwork for
training and identification of four fall events. For conserving space, we omit the diagram
for non-fall events. As will be discussed in the next section, none of them identified all

events with 100% accuracy.

3.5.2 Hybrid Algorithm: Neural Network with Softmax Regression

The hybrid classification network is based on both Artificial Neural Network and soft-
max regression network. Fig. 3.6 shows a block diagram of a hybrid network: a row of
neurons followed by a row of softmax regression units.

We have used the prior softmax activation and the negative-log likelihood functions in
the output layer. The hidden layers have used rectified linear units (ReLUs). We have
also included the bias terms for all hidden layers. The backpropagation algorithm [56]
has been used to calculate the gradient, while the L-BFGS procedure has been used to

learn. the network parameters. We have independently set each dimension of the sample to
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have zero-mean and unit-variance. We achieved this by first computing the mean of each
dimension across the training set and subtracting this from each dimension. Then each
dimension is divided by its standard deviation. Similar to softmax regression networks,
we experimented with both single-layer hybrid networks and two-layer hybrid networks.
While single-layer hybrid network failed to identify all events with 100% accuracy, the
two-layer hybrid network successfully identified all event with 100% accuracy. There were
no false positives or false negatives. In the rest of paper, we referred hybrid networks as

neural networks.

Training Set for Training Set for
Fall Events Fall Events
Softmax Regression Neural Network
* + ¢ * Softmax Regression
FF FB FL FR % * ¢ ¢
FF FB FL FR

Figure 3.7: Layer 2 learning module for four Fall events. The left-side Figure is using Softmax Regression

model. The right-side Figure is a hybrid of Neural Network and Softmax Regression

3.6 Online Activity Monitoring and Identification

In Sections 3.4 and 3.5, we have discussed the semi-automatic training example extrac-
tion and the learning of the parameter vectors of the classifiers for the event prediction and
identification. This process is primarily offline. In operational mode, we require that the
learned classifiers monitor and identify events online. This section provides our setup and

methodology.
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3.6.1 Monitoring of Events

For the monitoring of events, we have followed a methodology similar to that of Sub-
section 3.3. We collected the sample data to a circular buffer. From a starting marker
(initially at the beginning of the circular buffer), we have averaged 20 consecutive sample
and added that value to a second circular buffer. The first circular buffer is incremented
by 10 samples, then average the next 20 samples (if the data is available), and pushed the
average value into the second circular buffer. We have continued this process in the first
circular buffer with 10 sample overlap. In the second circular buffer, we have maintained a
window of 20 samples. In order to compensate for noise, we have used five average values
from the window. These values are used in the event identification. We then incremented

the second circular buffer by 10 samples and continued the process.

Feature Vector from Mation Data

|
V.

Layer 1 Classifier

Fall l lNun-FaII

— Layer 2 Classifier Layer 2 Classifier ' —

IR AR

Identified Fall Event  |dentified Non-Fall Event

Figure 3.8: Block diagram of event identification system. The top layer separates fall events from non-fall
events. The bottom layer modules receive the same input data vector as the top layer, but they also get a zero
or one input from the upper layer module depending on where the input data vector is classified. The final

output is a binary valued vector of 11 components.
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3.6.2 Identification of Events

As stated earlier and also we will discuss in Section 3.7 for 100% success rate, we have
used a layered classification network as shown in Fig. 3.8. The inputs to the classifiers
are the pre-processed motion data from the previous subsection. In the first layer of our
classification network (Layer 1), we have used a binary decision classifier that predicts
whether the current input is a fall or a non-fall. Based on this decision, at the second
layer of our network (Layer 2), one of the specific fall event or non-fall activity recognition
classification network is activated. The decision of this classifier is considered as the output
of the classification network. In order to compensate for noise, we have used the five
samples as described in the previous section. We have marked the predicted events; if
the five inputs (calculated from a window of the second circular buffer) predict the same

outcome, then the network voted to that event, otherwise, we don’t identify any event.

3.7 Empirical Evaluation of Proposed Algorithms and Meth-
ods

In this section we report the performance of our proposed algorithms and methods. A
detailed description of the data collection and preprocessing steps can be found in Section
3.3. We have experimented with one-layer and two-layer classifiers. First, the performance
of one-layer softmax and neural networks classifiers are reported. Then that for two-layer
networks are presented. For all results reported here the value of A in the cost function

(Equation 3.1) is 0.1.
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3.7.1 One-Layer Networks

We trained two one-layer networks: softmax regression and neural networks (see Fig. 3.6
for block diagrams of these networks). Performance of these networks are discussed in the

next two paragraphs.

3.7.1.1 Softmax Regression

As can be seen from Table 3.2, one-layer softmax regression network with 7 inputs
(6 for feature vector and one for bias) and 11 outputs recognized on an average 94.4% of
all events. A closer examination reveals that all but three types of events — fall-forward,
walk-forward, and walk-right events — are recognized correctly. Recognition rate for fall-
forward events is only 66.7%. This event is sometimes incorrectly classified as a walk
backward or a march event. Walk forward event is correctly recognized on an average rate
of 87.5% and sometimes it is incorrectly classified as a walk-right event. Recognition rate

for walk right events is same as walk forward and is confused with some walk-left events.

3.7.1.2 Neural Network

Performance of neural networks is shown in Table 3.3; it recognized 95.8% of all events
correctly. Before we discuss our results, it should be noted that the network is composed of
one hidden row of 16 neurons with ReLLU followed by a row of 11 elements with softmax
activation function (see Fig. 3.6 in Section 3.5). An advantage of this architecture is that
the number of neurons in the hidden row can be varied for optimal performance.

As can be seen from Table 3.3, all events except fall-forward and walk-right events

were recognized correctly. The neural network improved recognition rate of walk-forward
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Table 3.2: Performance of a single layer softmax regression network with six inputs and 11 outputs. On an

average 94.4% of the events were classified correctly.

FF | FB | FL | FR | WF | WB | WL | WR | MR | RC | RA

FF | 66.7| O 0 0 0 167 O 0 167 O 0

FB 0 | 100 O 0 0 0 0 0 0 0 0

FL 0 0 [100| O 0 0 0 0 0 0 0

FR 0 0 0 [100] O 0 0 0 0 0 0

WF | O 0 0 0 [875] O 0 | 125 O 0 0

WB | O 0 0 0 0 100 | O 0 0 0 0

WL | O 0 0 0 0 0 100 | O 0 0 0

WR| O 0 0 0 0 0 | 125|875 O 0 0

MR | O 0 0 0 0 0 0 0 100 | O 0

RC | O 0 0 0 0 0 0 0 0 | 100 O

RA 0 0 0 0 0 0 0 0 0 0 | 100

events to 100%. But recognition rates of fall-forward and walk-right events remained same
as softmax network at 66.7% and 87.5%, respectively.

Because of failure of one-layer networks, we explored two-layer classification net-
works: the first layer classified an input into two categories, a fall event or a non-fall event.
Then, a second layer differentiated events within its own category. A block diagram of the

classifier is shown in Fig. 3.8.
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Table 3.3: Performance of a Neural network with one row of neurons with ReLU and one row of elements

with softmax activation function. On an average 95.8% of the events were classified correctly.

FF | FB | FL | FR | WF | WB | WL | WR | MR | RC | RA

FF 667 | O 0 0 0 0 |[167] 0 |[16.7] O 0

FB 0 |100] O 0 0 0 0 0 0 0 0

FL 0 0O [100 O 0 0 0 0 0 0 0

FR 0 0 0O [ 100] O 0 0 0 0 0 0

WF | O 0 0 0 [ 100 | O 0 0 0 0 0

WB | 0 0 0 0 0O (100 | O 0 0 0 0

WL | 0 0 0 0 0 0 100 | O 0 0 0

WR | O 0 0 0 0 0 [ 125|875 O 0 0

MR | O 0 0 0 0 0 0 0 100 | O 0

RC 0 0 0 0 0 0 0 0 0 | 100 O

RA 0 0 0 0 0 0 0 0 0 0 | 100

3.7.2 Two-Layer Networks
3.7.2.1 Layer One - Classification of Fall Events or Non-fall Activities

Performance of layer-one of a two-layer classifiers has been tabulated in Table 3.4. As
can be seen from the table, softmax network at layer-one (top layer) correctly classified
only 87.2% of fall and non-fall events, but neural network correctly classified all fall and

non-fall events. We used only two neurons in the hidden row.
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Table 3.4: Performance of layer-one of a two-layer classifiers. Softmax network at layer-one correctly identi-

fied 87.17% of fall events from non-fall events, but the neural network correctly identified all fall and non-fall

events.
Softmax L.1: 87.2 Neural L1: 100
Fall Event | Non-Fall Event || Fall Event | Non-Fall Event
Fall Event 85.7 14.3 100 0
Non-Fall Event 12.7 87.3 0 100

Because of its 100% recognition rate we choose neural networks as the layer-one net-
work in our two-layer classification networks. In this layer-one neural network it has two

hidden units.

3.7.2.2 Layer Two - Identification of Individual Fall Events or Non-fall Activities

Performances of layer-two networks are shown in Tables 3.5, 3.6, and 3.7. It is easy to
see from Table 3.5 that both softmax and neural networks at layer-two correctly classified
100% of fall events. Results for seven non-fall events are shown in Tables 3.6 and 3.7.
Again both softmax and neural networks achieved 100% accuracy. The neural network

used one hidden row of 6 neurons.

3.8 Conclusions

During activities of daily life, an accident such as a fall may occur to humans. This
may leads to injuries, and immediate identification of it can alert for a fast response. There
are many inexpensive wireless motion sensing devices or one can be assembled using off-

the-shelf components. These devices can be attached to a human to collect motion data
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Softmax: L2 Fall Event: 100 | Neural L2 Fall Event: 100

FF | FB | FL FR FF | FB | FL FR
FF | 100 | O 0 0 100 | O 0 0
FB| O |100| O 0 0O | 100 | O 0
FL | O 0 | 100 0 0 0 | 100 0
FR| O 0 0 100 0 0 0 100

Table 3.5: Performance of layer-2 network for four fall events. Both softmax and neural networks correctly

classified 100% of fall events.

that can be used for monitoring activities of daily living. However, while performing these
activities, an accidental fall may occur.

In order to accurately identify these events, it is necessary to extract distinguishing
features from the motion data. Here, we have proposed a novel semi-automatic training
example extraction method to identify features and automatically annotate the datasets.
The proposed method significantly expedites the creation of the training set compared to
manually extracting them. Moreover, we have proposed and implemented a two-level clas-
sification network with a combination of neural and softmax regression networks to identify
seven type of non-fall activities and four types of fall events with very high accuracy.

While the evaluation of the proposed techniques using our off-the-shelf device has
proven to be effective, the project is far from complete. In the next chapter we propose
a distance measure. We also propose and evaluate three different algorithms to detect and

monitor ADLs where we are able avoid miss-classification using a thresholding technique.
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Table 3.6: Performance of layer-2 network for seven non-fall events. Softmax regression correctly classified

100% of non-fall events.

WF | WB | WL | WR | MR | RC | RA
WF | 100 | O 0 0 0 0 0
WB| 0 [ 100]| O 0 0 0 0
WL | O 0 | 100 | O 0 0 0
WR | 0 0 0 | 100 | O 0 0
MR | O 0 0 0 [100] O 0
RC | 0 0 0 0 0 |100] O
RA | O 0 0 0 0 0 | 100

Table 3.7: Performance of layer-2 network for seven non-fall events. Neural networks correctly classified

100% of seven non-fall events.

WF | WB | WL | WR | MR | RC | RA
WF | 100 | O 0 0 0 0 0
WB| O [ 100]| O 0 0 0 0
WL | O 0 (100 | O 0 0 0
WR | 0 0 0 | 100 | O 0 0
MR | O 0 0 0 | 100 | O 0
RC | 0 0 0 0 0 |100| O
RA | O 0 0 0 0 0 | 100
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CHAPTER 4

Log-Sum Distance Algorithm for ADLs
Monitoring and Recognition

4.1 Introductory Remarks

In the previous chapter we presented fall and activity recognition algorithm using semi-
automatically extracted features from motion data. There we used existing classification
algorithm neural network and softmax regression. In this chapter we propose a distance
measure, called Log-Sum Distance, for evaluating the distance between two sequences
of positive numbers'. We use the Log-Sum Distance measure to develop algorithms for
recognition of human activities (such as walking forward, going up and down stairs etc.)
from motion data. Here, we propose, develop, and evaluate three models for recognition of
human-activities from wearable motion-sensor data. For recognition of activities, (7) one
model uses parameters from Multiple Linear Regression Model (MLRM), and (i) the other
two models use residual sum of squares (RSS) values from a MLRM. We also incorporate

a automatic threshold parameter selection process to avoid misclassification.

'Prof. Kamal Premaratene brought to our attention that the proposed measure can be derived from Breg-
man divergence [1]

38
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4.2 Linear Regression Model

be a column vector of n elements.

Let a linear model f(-) relate element y; of y with ith row, [z;1, Z;2, -+ , Tim], of X.
Mathematically,
Yi = f(xi1, Do, -+ Tim) = Bo + Broa + - + BrnTim 4.1)
If we denote 3 = [y, B, ... B,]T as a column vector, Equation 4.1 can be rewritten as,
Yi = [L, i1, Tig, - -+, Tim| B

Inserting a ‘1’ before the first element of each row of X, we get a matrix of n rows and

(m + 1) columns, X = [1, X]. Now using matrix notation we can write,

y=f(X)=Xp (4.2)

Suppose y and X are obtained from observing a system, and we want to estimate a
model f (+) from the data. This is equivalent to estimating values of 5 from y and X. Let
3 denote an estimate of 3, that is, 3 = [BO, By, Bm] Now the approximation of y from

X using f(-) (that is, 3) can be written as,

~

j=f(X)=X5, 4.3)

where

Ui = (1, i1, Tiay - -+, Ti) B- 4.4)
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The selection of the parameters B for approximation of the function f (-) depends on

the minimization of errors,

ei(B) = yi — . 4.5)
By far the most popular method for selection of B is that minimizes the residual sum of
squares [57].

n

RSS(B) =" (i — ) = Ily — 4l (4.6)

i=1

Denoting mean of RS.S(j3) as &(53), we can write.

A N

e(B) = RSS(B)/n = [ly = gll/n. (4.7)

Being a quadratic function of the parameters B , its minimum always exists. The mini-
mum is unique if X7 X is nonsingular, and the corresponding approximation of 3 is given
by

g=(XTX)'XTy. (4.8)
Above result can be found in any standard book on matrix computation, but for complete-

ness, next we state it as a theorem.

Theorem 1. (Least square error model [58] ) The linear model in Equation 4.2 that mini-
mizes sum of squared error (given by Equation 4.6) always has a solution. The solution is

unique if and only if X* X is nonsingular, and the solution is given by Equation 4.8.

0
From this estimated model f () we can get an estimate of y; from a new observation

xk. Expressing in vector-matrix notation,
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)= X§. (4.9)

It is also important to recall that vector B points in the steepest uphill direction in the
input subspace [57]. Therefore, two characterizing features of the data are B and RSS (B ).
In this research we use both of these features.

Before we discuss their applications for identification of activities of daily living from
motion datasets, we briefly introduce entropy, KL-distance, and establish some of its rela-

tion to log-sum measures of two sequences of positive numbers.

4.3 Entropy and KL-divergence

Let p = {p1,p2,-* ,Pm} and ¢ = {q1,92, - ,¢n} be two probability mass dis-

tributions [59]. Note that p and ¢ satisfy all axioms of probability mass distributions,

includingd 3" pi = >0 ¢ = 1.
Definition 1. (Entropy) The entropy H (p) of a probability mass distribution p is defined by
- i pilogp; (+.10)
0

Definition 2. (KL-distance [60]) The Kullback-Leibler distance or KL-distance or relative

entropy between two probability mass distributions p and q is defined as,

D(pllq) = sz log— (4.11)
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Theorem 2. (KL-distance inequality [60]) For two probability mass distributions p and q

D(pl|q) = 0. (4.12)
Equality holds if and only if p; = q; forall 1 <1 < m. O

While the above theorem is used in many applications to measure entropy distance
between probability mass distributions p and ¢, it should be noted that the measure is not
symmetric, that is, D(p||q) # D(q||p) unless p and g are identical. For application that ben-
efits from a symmetric measure, sum of D(p||q) and D(q||p) is used, and the corresponding
inequality is

D(pllg) + D(qllp) > 0 (4.13)

We experimented with both the original KL-distance and the symmetric KL-Distance
measures. We found that identification of ADLs with original KL-distance measures were
much worse than with symmetric KL-distance measures. Thus, to conserve space perfor-
mance of the original KL-distance measures is not reported here.

Next we introduce a symmetric log-sum distance measure for two sequences of positive

numbers of identical length.

4.4 Log-Sum Distance

Definition 3. (Log-Sums distance) For two sequences of positive numbers U = < wuyq,

U, Uy >andV = < vy, v, -+ , U, > log-sum distance of U and V' is defined as,
LDU||V) = ;log — ;log — 4.14
(Uv) ;u Ogvi+;U 0g (4.14)

Next we show that LD(U||V') is non-negative.
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Theorem 3. (Log-sums inequality) For two sequences of positive numbers U = < wuyq,

Ug,  ,Upm >andV = < vy, vg,- - , Uy >,
LD(U||V) >0 (4.15)
Equality holds if and only if u; = v; forall 1 <1 < m.

Proof. Assume without loss of generality that v; > 0 and v; > 0. We start with the

definition of LD(U||V') in Equation 4.14,

m m
U; V;
LDU|lV) = u; log — + v; log —
UIV) = D ulog™ + 3 wilog
=1 i=1
m
U;
= Z(u, —v;) log — (4.16)
° V4
1=1
Now, we show that value of each term of the sum is (i) zero when u; = v; and (i7) greater
than zero when u; # v;. Thus, the sum cannot be negative and, moreover, it is greater than
zero if there exist at least one pair of u; and v; such that u; # v;.
For each term of the sum in Equation 4.16, we have to consider two cases: u; = v;, and
(% 7é V;.
Case 1 (u; = v;): In this case, since (u; — v;) = 0 and log(u;/u;) = 0, we have (u; —
v;) log % = 0.
Case 2 (u; # v;): In this case we have to consider two situations, u; < v;, and u; > v;.
If u; < v;, both (u; — v;) and log(u;/v;) are negative numbers, and hence, their product is
greater than zero. On the other hand, if u; > v;, both (u; — v;) and log(u;/v;) are greater
than zero, and hence, their product is also greater than zero.
Thus, the sum in the right-side of Equation 4.16 is zero, if u; = v;, forall 1 <7 < m.
On the other hand, if for one or more terms of the right-hand side of Equation 4.16 is greater

than zero, the right-hand side of the equation is greater than zero. This completes the “if”

part of the proof.
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For the only if part of the proof it is easy to show that if the sum is zero, then each
individual term must be zero. Because if that is not the case then one or more terms of the
sum must be negative; in that case (u; —v;) and log(w; /v;) must have opposite signs, which

is impossible. Similar arguments hold for the case when the sum is greater than zero. [
Next we establish a relation between LD (U||V') and KL-distance.

Theorem 4. (Log-Sums distance and KL-distance relation) For two sequences of positive

numbers U and V,
u
LD(U||V) = (u — v)log — +uD(pllg) + vD(dllp) (4.17)
where uw =Y " u;, 0=y " Vi, pi = ui/u, and ¢; = v;fv forall1 < i <m.

Note that P = {p17p27 e )pm} and Z:ilpz = 1. AlSO, q = {QIJQQv Tt 7Qm} and
>, g = 1. While p and ¢ are not probability mass distributions, they can be used for

measuring D(p||q) and D(q||p) because sum of the terms in p (and ¢) is 1.

Proof. Since u; = up;, we have
Z u;log — = Z up; log pi
i=1 vi i=1 g

= uipﬂog%#—uipilog%
i=1 i=1 !

u
= ulog; +uD(p||q) (4.18)
Similarly, it can be shown that,
" V; v
g v; log = vlog " +vD(q||p) 4.19)

i=1 ¢
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For completing the proof, first we use the definition of LD(U||V') and then Equations 4.18

and 4.19.
LDU||V) = Zm:uilog% + Zmzvilogﬁ
i=1 Vi o i
u v
= ulog— +uD(pllq) +vlog — +vD(dllp)
u
= (u—v)log ~+uD(pllg) +vD(dllp)
This completes the proof. O]

Corollary 1. (Log-sum and KL-distance inequality) For U, V, u, v, p, and q as defined ear-
lier,

LD(U||V) > uD(p||q) + vD(q||p). (4.20)

Equality holds if and only if u = v.

Proof. Since for any two positive numbers u and v, (v — v)log(u/v) > 0 (see proof of

Theorem 3), the proof of the inequality follows immediately from Theorem 4. 0

In the next section we present methods that utilize the results in the Section 4.2, 4.3,

and 4.4 for identification of human activities.

4.4.1 Log-Sum Distance and Bregman divergence [61]

Let ' : X — R be a convex function, where X C R™. Then Bregman divergence

Dpr between two points U, V' € X is defined by
Dr(U||V)=FU) - F(\V)—-(U-V,VF(V)). 4.21)

Let, f(z;) = x;logxz;; where x € R™ and dom f = (0, 00)
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Again, if we define F" as a sum of function f(.), then we get F(z) = > " fi(x;) and
the gradient of F' at vector point =
(OF(x) 0F(z)  OF(x)
VF = .
(I) 8.'E2 ’ ’ 8xm
_ | Ofilw) Ofi(w)  Ofilwi)
T Oxe T Owy,
_ -8 27;1 r;logx; O ZZ’; x;log ; 0 Zﬁl x; log x;
N 0x; ’ 0x4 T 0%,
= 1—|—logx1,1+logx2,...,1+logxm] (4.22)

Let U =< uy,ug,...

JUp >and Vo =< vy, v, ...,

v, > are two vectors consist of

positive numbers, then Bregman divergence from equation 4.21 can be re-written as

DAUIV) = 3 f) =S F) — S
i=1 i=1

—v;)(1 + log v;)
i=1

= Zuilogui — Zvilogvi — Zuilogvi - iu’ + ivilogvi + ivi
i—1 i=1 i=1 i=1 i=1 1=1

= iuilogui - iuilogvi - in:uz + iw
1 i—1 i=1 i=1

= iuilog%—iuﬁ-i% (4.23)
i=1 L= i=1

where (U — V, VF(V))

= Z:il(uz -

v;)(1 4 log v;)

Similarly, we can show that

r(VI|U) = sz log —— Zvl Zuz (4.24)

Now adding equation 4.23 and 4.24 we get symmetric Bregman divergence

Dp(U|[V) + De(VI]|U)

m m m m m m
Uj Vj
E uilog——g uH—E ”Ui+§ v; log — — E Ui+§ U
=1 =1 =1 =1 =1 =1
“ U “ v
E u;log — + g v; log —
X (% X U;
=1 =1

D(U||V) (4.25)
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Hence, we see that the symmetric Bregman divergence is Log-Sum Distance measure when

the convex function F is defined as F'(z) =>"\" | fi(z;) => 1", x;log ;.

4.5 Activity Detection Algorithms

Let A ={1,2,...,n,} be aset of ADLs, and let the set {1,2,--- ,m} be denoted by M.
During each activity k € A, Wireless Sensing Units (WSUs) with Inertial Measurement
Units (IMUs) are attached to different locations on the body of a subject. These WSUs
collect motion data and send the data to a computer for preprocessing. Let us assume that
each WSU collects m time series of length n.

Initially datasets are collected for all n, activities. These datasets are processed by
feature extraction algorithms, which are used for training a device for identification of
each activity. For correct identification of each activity, the set of features for the activity
must have an unique signature; otherwise, correct identification of the activity may not be
possible. During the monitoring phase datasets are collected continuously, their features
are extracted, and these features are compared with learned features to identify activity

being performed.

4.5.1 Data Preparation for Extraction of Features

For k € A, let X% = [Xl(k),Xék), e ,X,Sp] is the m-time series of an activity k.
When X l(k), for | € M, is removed from X (¥) and a unit column vector 1 of appropriate

size is appended as the first column, let the new matrix be denoted as X l(,k). That is,

Xl(/k) = [17 Xl(k)v T 7Xl(lj)17 Xl(f)l’ o 7X7§V]l€)] (4.26)
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In this study, we use the method described in Section 4.2 for estimating m linear models

fz(k)(')’ for each & € A and each [ € M, to relate Xl(k) with Xl(,k). Thus,
A = 1) = X PR @27
where
i = (T ). 4.28)

Recall that Bl(k) points in the steepest uphill direction and minimizes residual error
RSS (Bl(k)). For each activity £ € A we have m steepest uphill direction vectors Bl(k) =
[Al(é“), Bz(f)> .., BE T, for I € M. Also, corresponding to each Bl(k), we have a mean

residual sum of squared error él(k) (BAl(k)) given by,

& (") = RS /m = 11X = ;7| /. (4.29)

In this study, we use these values to study several activity monitoring and recognition algo-

rithms.

Algorithm 1 Calculate Parameters Bl(k) for fl(k) and é}k)(ﬁl(k))
1: procedure ESTIMATEPARAMETERSANDERRORS

2. Input: X*)
3: Output: Bl(k) and él(k) foralll e M

4: foreachl € M

5 Construct X l(,k) from X (*) using Equation (4.26)
6: Compute ﬁfk) using Equation (4.28)
7: Compute ¥ (3*) using Equation (4.29)

8: end procedure
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Training Set for A Activities

—bl For each k € A

Training Data X®

<L

Use Algorithm 1 tAo
Calculate f® and e®

A

B e

Figure 4.1: Block diagram of extraction of features for training.

4.5.2 Extraction of Features for Training

We use Algorithm 1 for extracting features from datasets for training (and monitoring
or testing) (see Fig. 4.1). For each activity k£ € A, input to the algorithm is a matrix of
motion data X (). The algorithm computes m linear models and m mean residual error

values for each activity. Let us denote the model parameters by B(k) as,

In the matrix notation this can be written as,

30 e 0|
R A I
5(’6) —

N R )
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Since there are n,, activities, we call Algorithm 1 for n, times to get the set of training

parameters B .

~ A

B =< /6(1)7/3(2)7"' 7B(nu) >

We use all B(k’) in B for our Angle Similarity Algorithm described in Section 4.5.3.

A call to the Algorithm 1 also generates m mean residual sum of squared errors,
é(k) = {égk)v éék)7 e 761(7];:)}‘

These mean error values are used in our other algorithms presented in Sections 4.5.4

and 4.5.5.

4.5.3 Angle Similarity Algorithm for Identification of Activities

As the name suggest, this algorithm computes angles between linear model parameters
of the training sets and testing sets. Let a testing datasets be denoted by X. First call

Algorithm 1 with X as input. Let output parameters from the algorithm be denoted by
/é = [617327 e 7B’m]

Now call Algorithm 2 for n, times, once for each activity k € A. Each call calculates m
angles [ng), 95“, e ,Gﬁf)} for an activity k. Let us represent these set of angles as matrix
0 of n, rows and m columns, each row represents angles for a given activity. Next we

describe how these angles are used to identify activities. We have evaluated two methods.

9%1) 951) . 9%)
9%2) 952) o 97(3)

0= . (4.30)
o) 6y o)
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In an ideal case, if the testing set is from activity &, the angle between the parameters of
the activity and the parameters of the training activity k£ should be zero. However, in reality
the value of these angle are not zero. Our algorithm assumes that, if the testing data came
from activity k, then the angle would be minimum with training parameters for activity k

and the testing parameters (see Fig. 4.2).

4.5.3.1 Minimum Sum Method

In this method, sum of all angles in a row are computed. The activity corresponding
to the row that has the minimum sum is identified as the activity. The problem with this
method is that there is no obvious or natural way to avoid a misclassification. The method

described next overcomes this deficiency.

4.5.3.2 Voting Method

In this method, first we find the minimum angle at each column. Let us consider each
minimum value as a vote, that is, if the minimum value is at row number k&, then it is a
vote for activity k. Since we have m columns, an activity may receive as many as m votes.
After completing column-wise voting, the votes for each activity is counted. The activity
that has more than half the votes, represents the activity. For example, if m is six then the
winning activity (row number in our notation) must have four or more votes. If no row has
more than half of the votes, then the input is not classified. Thus, in this activity recognition

method we have a natural way of setting a threshold for recognition.
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Algorithm 2 Calculate Angles Ql(k)
1: procedure ANGLESBETTRAININGANDTESTDATASETS

2: Input: 3® and B

3: Output: QZ(k) foralll e M

4: foreachl € M

5: Calculate Angle ka) between Bl(k) and 3,

6: end procedure

4.5.4 Symmetric KL-distance Algorithm

In this section we present an algorithm for identification of ADLs using symmetric
KL-distance measures (introduced in Section 4.3. Recall that it is defined as K L(p||q) =
D(pllq) + D(q||p) for two probability mass distributions p and q. It is important to remind
the reader that this algorithm as well as the log-sum distance algorithm use mean residual

sum of square errors.

Let e®) = {égk), éék), cee éSfi)} be the mean residual sum of square errors for activity
k. Since é® is not a probability mass distribution, before computing KL-distance matrix

Dy, each set of errors for an activity is normalized such that the sum of the normalized

values adds to 1. Let us denote the normalized values by

where

=S (4.32)
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Testing Set X

Training E\arameter
B

Use Algorithm 1 to

Calculate fﬁ
For each k € A
Get Training B
Parameter X

A
4& (k)

Use Algorithm 2
To Calculate 8 ®)
Using B® and B

6
N2

Use Either Minimum Sum
or Voting Methed To
Identify Test activity k"

Identified Test Activity k*

Figure 4.2: Block diagram of activity identification system using angle similarity.

Let us denote these normalized values as a matrix ().

VAR S}
@ @ 2)
q q .. q
Q=" 2 " (4.33)
-q§na) qé’na) .. qgr;«a)-

Then, the sets of normalized error values in the matrix () are used to define a (n, X n,)

distance matrix D g, and it is used for identification of the activities as described below.
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d(]. 1) d(l 2 . d(l,na)

Dgy = dgf) dgf) . dﬁf“) (4.34)
Na,l Ng,2 Na,Na
_d.(KL ) d&(L b d.(KL )_
where,
109 (0) g’ ) at
dip = Z q;," 1og, q_J + Z qy; " 1og, p
k k

Note that d(k M — 0 for all k € A. Also, the matrix D, is symmetric, but for ease of

description and programming we have used complete matrix.
Testing Set X

Training mean RSS
eé® for Allk € A

Use Algorithm 1 to
Calculate e
and then Caluclate q

For All k € A Use q
&® to Calcualte q® %
Hance we Get Matrix Q For All k € A Use

Q Algorithm 3 with
q q™ and q and Get Ay

From Q, Get the A
Training Distnace
Matrix DX-
In Ay K™ is Min Index
Use Eugation 29 with
) Dy and A, to Put the
s Threshold.

Identified Activity as k*
Or Unable to Identify

Figure 4.3: Block diagram of activity identification system using KL-Distance algorithm
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4.54.1 Symmetric KL-distance Algorithm
Let a testing datasets be denoted by X . First call Algorithm 1 with X as input. Let out-
put mean residual sum of squares from the algorithm be denoted by e = {é;, ¢, , €5},

and the corresponding normalized values be denoted by ¢ =< ¢1, g2, - -+ , @ >

Algorithm 3 Calculate Distances d&@z
1: procedure DISTBETTRAININGANDTESTDATASETS

2: Input: ¢ and ¢

3 Output: A%)L
(k
l

k m k )
4: A&()L = Zl:l (ql( ) 10g2 qT +q 10g2 q((]—,lc))
I

5: end procedure

Now call Algorithm 3 for n, times, once for each activity k& € A. Each call for activity
k calculates one distance value A%)L Let us represent these set of distances as Agy =
{A?L, Ag)L, e ,Ag?z)}. We use the set of distances in Ag;, for identification of the
activity from which we got the testing datasets X . If £* be the index such that, A([]fz) is
the minimum distance in Ay, one may select £* as the activity. But, as shown in Section

4.7.2.2, the KL-distances among activities may vary greatly and selection of the activity

may be wrong.

Threshold For increasing correct activity-detection rate, it is desirable to have a method

to decrease or eliminate effect of distance variations. Our proposed method for this is

described next. An implementation of the proposed method is described in Section 4.6.
(k*,0)

We compare each element D, in the row k* of Dk, with corresponding element

A%)L in Ak, for all [ # k*; we accept k* as the activity if

aj - d Y < A (4.35)
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for some predetermined threshold oy € (0, 1). One may use a simplified version of CMA-
ES algorithm [62] to computer a ‘good’ values of ay-. However, we define an optimization
function for computing optimal values of « (see Section 4.6.1). A block diagram of KL-
distance and threshold based activity identification method is shown in Fig. 4.3.

Next we present an algorithm using our Log-Sum Distance measure.

4.5.5 Log-Sum Distance Algorithm

This version of the algorithm considers DL(U||V') for activity identification. The al-
gorithm is similar to the KL-distance algorithm. Instead of D, it uses D p values as

defined next.

[ 1,1 1,2 1,nq
d(LD) d(LD) d(LD )
Dip = | i) af) - dig
Na,l na,2 Na,Na
_d(LD ) d(LD b d(LD )_

where

- moo (j)

k=1 k

The results from empirical evaluation of these algorithms are presented in Section 4.7.2.3.
In the next section we describe how a set of ‘good’ threshold values are selected for en-

hancement of performance of the KL-distance and Log-Sum Distance algorithms.
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4.5.6 Hybrid Method: Log-Sum Distance with Angle Similarity

This proposed hybrid activity detection method is based on both Log-Sum distance and
Angle Similarity methods. To train our recognition system we extract training mean RSS
errors ¢ for all k € A and parameter B from the training data. Then using training mean
RSS errors é®) for all & € A we calculate training Log-Sum distance matrix Dyp. To
identify an activity from a given dataset X, we extract features mean RSS errors e and
parameter B from the dataset. We use mean RSS errors & of X and training mean RSS
errors €*) with Log-Sum distance algorithm and thresholding to identify the activity k*. If
we are able to identify the activity k*, we stop there and select £* as the activity for the
dataset X.

If we are unable to identify the activity using Log-Sum distance algorithm, we apply
the Angle Similarity method with voting using parameter B of X and training parameter
B.If Angle Similarity method can identify the activity, we select £* as the testing activity.

If both methods result the test dataset as unable to identify, we select that activity testing

dataset X as unclassifiable. The Hybrid activity detection process is shown in Fig. 4.4.

4.5.7 Complexity Analysis of Activity Detection Algorithm

It can be observed from Equation 4.14 that the execution time of the Log-Sum distance
algorithm grows linearly with the number of features m. Our feature extraction process
use linear regression. And for m number of features and n» number of data points Equa-
tion 4.8 has time complexity of O(m?n). Hence, feature extraction for n, activities using
Algorithm 1 has time complexity of O(n,m?n). In all practical situations, n >> n, and
n >> m. Angle calculation from two vectors are linear time operation. Our Algorithm 2

calculates m angles and total time complexity for this algorithm is O(m?). In practical situ-
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ations, number of features m and number of activities n, are very small. In our experiment

maximum value we have used for m and n, are 25 and 13, respectively.

In the next section we present method we used to determine threshold values for de-

creasing misclassification.

Optimized oy Training B and mean

Selection set RSS &M for All k € A Testing Set X

e® for All k € A

| |r _____ Use Algorithm 1 to
{ 4 Calculate e and B

For All Activities k € A
Optimization of Parameter
oy is Done Using
Algorithm 4

e® for All k € A

o m
o
23
3> SN2 A4
g ; A
2 2 Identify Activity Using B B
Log-Sum Distance
Using Thresholding with o,
Unable To
Identify Activity
\/ NS S~

Classify Previously Unable
Activity Identified to Identify Activity Using
as k* Angle Similarity Vothing Method

Unable To
Identify Activity

Figure 4.4: Block diagram of proposed hybrid activity classification method.
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4.6 Computation of Optimal Threshold Values

The algorithms we have described in Section 4.5 can identify activities with high ac-
curacy, but still incorrect classification is not eliminated. To eliminate or reduce incorrect
classification, we proposed to use a threshold value oy, for activity k € A, in Section 4.5.4
(Equation 4.35). During classification an input that does not meet the threshold criterion,
we label it unclassified. We believe, in most cases failure to classify an activity is prefer-
able over misclassification. For setting an automatic threshold value of the parameter oy, in
Equation 4.35 we first define an optimization function. The value of the function is min-
imum when the value of the parameter is optimal. Thus, if we start with a value of zero
for oy, and its value is increased, the function will monotonically decrease until the optimal
point is reached. From the optimal point, the value of the function monotonically increases

as the value of «, is increased.

4.6.1 Optimization Function

In this section we define an optimization function for searching an optimal parameter
value o, for activity k. For o, = 0, let us assume that C' and M be the number of correctly
and incorrectly classified inputs, respectively. Now for 0 < «; < 1, let C(ay), M (ay),
and U(ay) be the number of correctly, incorrectly and unclassified inputs, respectively.
Note that (C' — C'(ax)) is the number of correct classification reduction, and similarly
(M — M(cy)) is the number of misclassification reduction. Both the reductions contribute

to increase in the number of unclassified inputs. Let us define a function f (o),

flag) = 7.(C = Clag)) + ym(M — M(ag)) — v * Ulay) (4.36)
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where 7., v, and 7, are suitable positive constants.

Setting appropriate values of these constants is very important. Let us examine what
happens when a non-zero value for oy is introduced. Suppose when «ay, equal to zero and
an input X was misclassified, but for a non-zero value of ay, X is not classified; thus,
a decrease in misclassification group has resulted into an equal increase in unclassified
group. For this shifting of an input from misclassified group to unclassified group we want
to reduce the value of f(cy); for this to happen we must have v, < 7,.

On the other hand, any reduction of correct classifications must increase the value of
the function. With similar argument it can be established that 7. > ~,. From these two
conditions we get 7. > 7, > 7Ym. For the experiments reported in Section 4.7, we have

used v. = 3,7, = 2, and v,,, = 1.

4.6.2 Algorithm for Computation of a Threshold

A block diagram of the proposed optimal value computation algorithm using optimiza-
tion function defined earlier is shown in Fig. 4.5. We use 50% of the data for computing a
set of optimal value of oy, for k& € A ( the other 50% of the data is used for performance
evaluation). Let P*) be the set of datasets to be used for computing optimal value of o,
for the activity k.

Algorithm 4 shows high-level pseudo code for computation of optimal value of the
parameter . Input to the algorithm is the trained distance matrix, D, and the datasets
for the activity k, P*). Output from the algorithm is the optimal value o, for the k. For
ensuring at least one iteration set f (last) the last computed value to = oco. Initial value of oy

(last)

and the « is set to zero. Now «, is used for computing number of correct and incorrect

classification C' and M, respectively. Then f(ay = 0) is calculated. The while loop is
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continued until the last computed value of the optimization function f(ay,) < f(al!®), that
is, the value of the optimization function continues to decease. This algorithm is called n,
times for computing optimal thresholds oy, for all n, activities. Each of the KL-Distance
and Log-Sum Distance methods requires one set of threshold values. Here we describe the
method for KL-Distance method only, because the procedure for computing that for the

Log-Sum Distance method is almost identical.

Trained Distance Matrix  Optimal «, selection set
DKL P

_________ Bl

Use oy = 0 to classify
whole set and get
Cand M

Use q to classify j> Calculate the

whole set and value for f(ay)

get C(w), M(ay)
and U(ay)

ili o

| Increase oy |

Optimal oy

Figure 4.5: A block diagram of the proposed parameter optimization algorithm.

In the next section we report typical results from empirical evaluate the proposed Log-

Sum Distance algorithm and other algorithms.
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Algorithm 4 Optimize Parameter o, for the Activity £

1: procedure PERAMETEROPTIMIZATION

2:

3:

10:

11:

12:

Input: Dy - Trained distance matrix, and pP*)
Output: oy,
Set fUast) = o0 and at**Y) = a;, = 0
Using all X*®) ¢ P®) compute C' and M
Compute f(ay)
while f(ay) < flast)

Increase oy, f) = f(ay)

Using all X ) ¢ p(k)

compute C'(ay) and M (ay,)
Compute f(ay)

ap = O[(last)

13: end procedure

4.7 Empirical Evaluation of Proposed Algorithms

In this section we report the empirical evaluation of our proposed algorithms and meth-

ods. First, we describe the experimental setup and data sources for empirical evaluations.

Next, we discuss observations from the experimental evaluations, and compare and contrast

performances of the proposed algorithms and methods with the KL-distance method.

To be more specific, we present results for two different angle similarity methods, sym-

metric KL-distance method, and Log-Sum Distance methods. Both KL-distance method

and Log-Sum Distance method have been evaluated with two different variations for each:

one variation uses no threshold values for reducing incorrect classifications, and the other
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utilizes threshold values to reduce incorrect classifications. As discussed, the reduction of

incorrect classification is very significant.

4.7.1 Experimental Settings

A list of activities used in our study is shown in Table 4.1. As can be seen from the
table, one group of datasets has data for six activities and the other group of datasets has
data for 13 activities. The table introduces the abbreviations used for reporting results
as well as identifies activities in datasets in each group. The first group of datasets were
collected in our lab and it is referred to as UM data in the discussions. The other group
of datasets has been obtained from Berkley WARD database [30] and it is referred to as
Wearable Action Recognition Database WARD in the discussions. The WARD database has
datasets for 13 activities. The set of activities includes three resting activities —1. standing
still (SS), 2. sitting still (ST), and 3. laying down on back (LD) — and ten active daily
life activities — 1. walk forward (WF), 2. walk forward left-circle (WL), 3. walk forward
right-circle (WR), 4. turn left (TL), 5. turn right (TR), 6. go upstairs (UP), 7. go downstairs

(DN), 8. jog (JG), 9. jump (JP), 10. push wheelchair (PW).

4.7.1.1 Experimental Device Setup and Data sources

For collecting UM data we assembled a wireless motion sensor device with a 9DOF
Razor IMU (that captures 9-axis motion data), a SparkFun Bluetooth Mate Gold transre-
ceiver for wireless networking, SparkFun USB LiPoly Charger and battery pack, and a
SparkFun FTDI Basic Breakout (for programming the IMU). To collect data, a we placed
the sensor device on the ankle of the subject. We also used a USB bluetooth transreceiver to

log sensor readings in a laptop computer. Each 9DOF Razor IMU via its bluetooth transre-
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Table 4.1: Activities, their abbreviations, and types of activities included in the datasets.

Activity Abbreviation | UM Data | WARD
Standing Still SS X X
Sitting Still ST X X
Laying Down on Back LD X X
Walk Forward WF X X
Walk Forward Left-Circle WL X
Walk Forward Right-Circle WR X
Turn Left TL X
Turn Right TR X
Go Upstairs UP X X
Go Downstairs DN X X
Jog IG X
Jump JP X
Push Wheelchair PW X

ceiver connects with the USB bluetooth transreceiver and creates a wireless sensor network
(WSN). For the experiment we use only one wireless sensor node but the system we have
developed can connect as many as 10 sensor nodes.

Also, we have developed a software tool on the data receiving computer. The software
tool runs on Microsoft windows operating system and is capable of simultaneously col-
lecting data from multiple wearable sensor devices. The software keeps track of the data

sending and receiving times and records these times.
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For the results reported here, we setup and enable the motion-sensing device to sam-
ple at 20ms, which is equivalent to 50/ z sampling rate. The device records nine motion
data per sample; three-axis accelerometer readings are in meter per square second (m/s?),
3-axis gyroscope readings are in radian per square second (rads/s?), and 3-axis magne-
tometer readings are in Tesla (7"). For results reported here, we exclude the magnetometer
readings. Therefore, our input data vectors are in R% and they are consist of accelerometer

and gyroscope readings.

4.7.1.2 Berkeley WARD Database

University of California at Berkeley has a Wearable Action Recognition Database [30].
This benchmark database contains datasets for 13 activities of daily living. Five motion
sensing devices are placed on different location on the body of a subjects while the subject
performs a designated activity. Each device has two sensors: (i) one 3-axis accelerometer
and (ii) one 2-axis gyroscope. So, their input data vectors are in R. It is a stable data set
for a quantitative comparison of algorithms for human activity recognition using wearable

motion Sensors.

4.7.1.3 Length of Time Series for Evaluations

Since recognition should be near real-time, it is important that the number of samples
to be used for testing should be small. We evaluated all algorithms with different lengths of
the time series. We observed that a minimum of 250 samples are necessary for consistent
high recognition rates. In general, the recognition rates increases with increase of the length
of the time series. It worth noting that for a given datasets to test and train as the length

of the sequence is increased, the number of testing samples decreases. We found that if
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450 samples are used, the there are enough samples in both UM and WARD datasets for

testing and training. Unless otherwise stated, all the results reported here use 450 samples
for training and identification of activities.
We selected a location from the time series at random and used 450 samples for training.

For testing, we use over lapping windows of 450 samples for each test.

4.7.2 Performance Evaluation with UM datasets
4.7.2.1 Angle Similarity

We use angle between training and testing vectors to identify activity as discussed in
Section 4.5.3. We report results for the Minimum Sum Method in Table 4.2. As we can
see from the result table this method has no option for avoiding wrong identification and
overall performance of this method is not satisfactory. Only going downstairs (DN) can be

identified with 100% accuracy.

Table 4.2: Performance of Angle Similarity algorithm with Minimum Sum Method for UM data.

SS | ST LD | UP| DN | WF

SS | 51.7 | 27.8 | 11.2 0 0] 93

ST | 84|582| 334 0 0 0

LD | 69| 6.28 | 86.82 0 0 0

UP 0 0 01]957 0| 43

DN 0 0 0 0| 100 0

WF 0 0] 151 0] 6.1]78.8

The results for the Voting Method is shown in Table 4.3. The threshold for classification

was, set.10.50%gd-e.s-an.activity must receive more than 50% votes to be successfully clas-
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sified. For a given input data if none of the activities received more than 50% votes, then
the data was not classified and placed in the unclassified group. From the table we observe
that for going upstairs (UP) and going downstairs (DN) 100% of the testing samples are
correctly classified. For lying down (LD) 95.66% of the samples are classified and 4.34%
of the samples are placed in the unclassified group. Also out of the 95.66% samples, only
5.22% samples are incorrectly classified. Other three activities have lower classification
rates but using voting threshold of 50% incorrect classifications are decreased.
Evaluations of both the methods reveal that the Voting Method identifies activities more

accurately than the Minimum Sum Method.

Table 4.3: Performance of Angle Similarity algorithm with Voting Method for UM data.

SS | ST LD | UP | DN | WF | unclassified

SS | 48.96 0| 833 0 0| 938 33.33
ST 0]592]| 344 0 0 0 6.4
LD 0]522]90.44 0 0 0 4.34
UP 0 0 0 | 100 0 0 0
DN 0 0 0 0| 100 0 0
WF 0 0| 5.08 0 01| 77.97 16.95

4.7.2.2 Symmetric KL-distance

Table 4.4 shows the KL-distance between six activities in the UM data. It is interesting
to note that mutual distances among three sedentary activities (Standing Still (SS), Seat-
ing Still (ST), and Laying Down (LD)) are greater than their distances with three mobile

activities (Go Upstairs (UP), Go Downstairs (DN) and Walk Forward (WF). Also, three
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mobile activities have relatively smaller distance among themselves. However, as we see

next, classification performances for all activities are quite good.

Activity classification for the UM data is presented in Table 4.5. For three activities

—sitting still (ST), laying down (LD) and going upstairs (UP) — all testing examples are

classified correctly. For standing still (SS) and walking forward (WF) correct classification

rates are 98.8% and 90.8%, respectively. But for going down (DN) incorrect classification

is very high about 65%. Thus, for any practical application this classification rate needs

improvement. Fortunately, as we present later, the classification rates can be improved with

thresholding technique, if values of parameters are selected wisely.

Table 4.4: KL-distance matrix for UM data.

SS ST LD UP DN WF

SS 0| 1.0421 | 3.3658 | 0.3639 | 0.5743 | 0.6710

ST | 1.0421 0| 4.1064 | 1.9071 | 2.8489 | 3.1006

LD | 3.3658 | 4.1064 0 | 2.5690 | 5.3749 | 5.3472
UP | 0.3639 | 1.9071 | 2.5690 0| 0.5737 | 0.5832
DN | 0.5743 | 2.8489 | 5.3749 | 0.5737 0 | 0.0066
WF | 0.6710 | 3.1006 | 5.3472 | 0.5832 | 0.0066 0

4.7.2.3 Log-Sum Distance

The Log-Sum Distance between six activities are shown in the Table 4.6. All the dis-

tances have a multiplicative factor of 10°. From the distance matrix we see that it has two

different patterns: sedentary activities have relatively smaller distances among themselves,
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Table 4.5: Performance of KL-distance from UM data without threshold

SS| ST | LD | UP DN | WF
SS 988 1.2 0 0 0 0
ST 0| 100 0 0 0 0
LD 0 0| 100 0 0 0
UP 0 0 0| 100 0 0
DN 0 0 0 0| 45.44 | 64.56
WF 0 0 0 0 9.2 90.8

but they have higher distances from mobile activities. Similarly, mobile activities have

relatively smaller distance among themselves.

Table 4.6: Log-Sum distance matrix from UM data. The numbers have a multiplicative constant of 10°.

SS ST LD UpP DN WF

SS 0| 0.000035 | 0.000056 | 18.875321 | 35.008325 | 81.066996
ST | 0.000035 0| 0.000061 | 21.857380 | 40.797971 | 93.753411
LD | 0.000056 | 0.000061 0 | 20.451555 | 40.031396 | 91.896320
UP | 18.875321 | 21.857380 | 20.451555 0| 1.599367 | 7.824626
DN | 35.008325 | 40.797971 | 40.031396 | 1.599367 0] 2.698625
WF | 81.066996 | 93.753411 | 91.896320 | 7.824626 | 2.698625 0

Table 4.7 shows testing results for the proposed Log-Sum distance method. Classifi-

cation rates for five of the six activities are perfect. For standing still, 91.67% of the test-

ing samples are correctly classified. This result demonstrates that the proposed Log-Sum

method has much better classification rates than the KL-distance method.
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Table 4.7: Performance of proposed Log-Sum Distance algorithm from UM data without threshold.

SS| ST | LD | UP | DN | WF

SS | 91.67 | 8.33 0 0 0 0
ST 0| 100 0 0 0 0
LD 0 0| 100 0 0 0
UP 0 0 0| 100 0 0
DN 0 0 0 0| 100 0
WF 0 0 0 0 0| 100

4.7.2.4 Symmetric KL-Distance with Optimized Threshold Value for Each Activity

The incorrect classification rates reported in Section 4.7.2.2 can be reduced by using a
threshold value for each activity. Using the optimization method described in Section 4.6,
we computed an optimal parameter value for each activity. Values of the optimal parame-
ters and classification performances are reported in Table 4.8. Optimal threshold parameter
values correctly classified all testing samples for four of the six activities. Also, it decreased

incorrect classification rates for other two activities.

4.7.2.5 Log-Sum Distance with Optimized Threshold Value for Each Activity

Table 4.9 shows the testing results for the proposed Log-Sum Distance method when
individual threshold value for each activity is used. The method correctly classified all
testing samples for all 6 activities without any misclassification. To be more specific, except
standing still, 100% testing samples are classified correctly. Standing still (SS) has about
8.33% testing samples unclassified. But the most important observation is that no testing

sample is classified incorrectly.
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Table 4.8: Performance of KL-Distance from UM data for training and testing size of 450 and using optimized

ag

SS| ST| LD | UP| DN WF | unclassified
SS | 98.8 0 0 0 0 0 1.2
ST 01]99.8 0 0 0 0 0.2
LD 0 0| 100 0 0 0 0
UP 0 0 0| 100 0 0 0
DN 0 0 0 0]402 | 234 36.4
WF 0 0 0 0| 1.8 |64.67 33.53

ar | 028 | 0.65 | 0.29 | 0.33 | 0.68 | 0.71

4.7.2.6 Hybrid Method: Log-Sum Distance with Angle Similarity

Results from combination of Log-Sum Distance method and Angle Similarity is pre-

sented in Table 4.10. In this experiment we have individual threshold value (o) for each

activity and voting method for angle similarity. The hybrid method improves result signif-

icantly; especially, unable to classify for standing still (SS) is reduced from 8.33% to only

1.18%.

4.7.3 Performance Evaluation with WARD datasets

In this section we report performances of the proposed methods with Berkeley WARD

database. Recall that the data was collected with five sensor devices, and each device had

five IMUs. Thus, while reading this section one must not directly compare observations

from WARD data with that from UM data. We report results only for KL-distance and
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Table 4.9: Performance of proposed Log-Sum Distance algorithm from UM data for optimized o

SS| ST| LD | UP | DN | WF | unclassified
SS | 91.67 0 0 0 0 0 8.33
ST 0| 100 0 0 0 0 0
LD 0 0| 100 0 0 0 0
UP 0 0 0| 100 0 0 0
DN 0 0 0 0| 100 0 0
WF 0 0 0 0 0| 100 0
ap | 0.2510.65]0.29 | 031 0.35]0.32

Log-Sum Distance methods, since they provide better classifications than angle similarity

method.

4.7.3.1 Performance of Symmetric KL-Distance with WARD datasets

Table 4.11 demonstrates the testing results for the KL-distance method without thresh-
old. It is clear that correct classification rates are quite high. Although we have some mis-
classifications for different activities, overall average classification accuracy is over 96%.
Table 4.12 demonstrates the testing results using optimal o, for each activities. All activi-

ties are detected with very high accuracy and misclassification rate is 0.8% or lower.

4.7.3.2 Performance of Log-Sum Distance with WARD datasets

Table 4.13 demonstrates the testing results for our proposed Log-Sum Distance method
without threshold for WARD dataset. The performance is better than the KL-distance

method. To be more specific, Log-Sum Distance method has incorrect classifications at 21
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Table 4.10: Performance of proposed Hybrid method that utilizes Log-Sum Distance algorithm with opti-

mized «y, and Angle Similarity methods.

SS| ST| LD | UP | DN | WF | unclassified
SS | 98.8 0 0 0 0 0 1.2
ST 0| 100 0 0 0 0 0
LD 0 0| 100 0 0 0 0
UP 0 0 0| 100 0 0 0
DN 0 0 0 0| 100 0 0
WF 0 0 0 0 0| 100 0
ar | 0251 0.65 | 0.29 | 0.31 | 0.35 | 0.32

locations compared with 38 locations for the KL-distance method (see Tables 4.11, and 4.13).
The performance of the Log-Sum Distance method improves significantly when optimal
threshold values are introduced to avoid misclassification (see Table 4.14). There are only
5 incorrect entries compared to 12 that for KL-distance method. Moreover, maximum rate

of incorrect classification is 0.1% compared to that for KL-distance method is 0.8%.

4.8 Conclusion

Automatic identification of daily life activities can be used for promotion of healthier
physical activities and lifestyle. There are many inexpensive wireless motion sensing de-
vices or one can be assembled using off-the-shelf hardware components. These sensors
can be used to make small wearable devices and collect motion data for monitoring regular
human activities. For the experiment, we have assembled and programmed components

to make a wearable motion sensing device with WSN to collect data. We have used those
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Table 4.11: Performance of KL-Distance method without threshold values for WARD database.

SS| ST| LD| WF| WL | WR| TL| TR| UP| DN | JG JP | PW

SS | 98.8 0| 08 0| 04 0 0 0 0 0 0 0 0

ST | 0.1 915 0 0 0 0 0] 14 0 0 64| 06 0

LD | 14 0975 0 0 0 0 0 0 0 0 0| 1.1

WF | 2.7 0 01954 | 03| 14 0 0 0] 02 0 0 0

WL 0] 08 0] 04]9.0 ] 1.1 0 0] 0.1 0 0 0| 16

WR 0 0 0] 03] 02965 0 0 0 0 0] 22 0

TL 0 0] 14 0] 0.7 01951 29 0 0 0 0 0

TR 0] 27 0 0 0 0 08942 0 0 0] 23 0

UP 0 0 0 0 0 0 1.0 0(976| 05| 09 0 0

DN 0 0 0] 03| 06 0 0 0 01977 0 0 14

IG 0 0 0 0 0 0 0] 06 0 0986 | 0.8 0

JP 0 0 0 0 0 0 0 0 09 0 0]99.1 0

PW 0] 1.8 0 0 05 31 0 0 22 0 0 0924

collected data and also one openly available benchmark data for performance analysis of
our proposed method over other similar methods.

There are a number of human activities where corresponding motion sensor readings
are very similar. Previous activity detection algorithms classified each input to one of the
given set of activities, which resulted into incorrect classifications. It is believed that in real-
life applications incorrect classification more harmful than avoiding classification. Here,
we have proposed a threshold based method for decreasing incorrect classification rates.
We have proposed a method for computing optimal threshold values that are used by the
detection algorithm during classification.

We have proposed and implemented a new mathematical method for distance based
classification. In the experiment, the new proposed Log-Sum Distance method has shown

a promising performance over other similar distance based methods. We have tested this
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Table 4.12: Performance of KL-Distance method with threshold values for WARD database

SS| ST| LD| WF| WL | WR| TL| TR| UP| DN | JG JP | PW | unclassified
SS 1 97.2 0 0 0 0 0 0 0 0 0 0 0 0 2.8
ST 01915 0 0 0 0 0 0 0 0 0 0 0 8.5
LD | 0.2 01965 0 0 0 0 0 0 0 0 0 0 33
WF 0 0 01]952 0| 0.1 0 0 0 0 0 0 0 4.7
WL 0] 08 0 0 9 0 0 0 0 0 0 0 0 42
WR 0 0 0 0 0| 96.1 0 0 0 0 0] 03 0 3.6
TL 0 0 0 0 0 0 95| 02 0 0 0 0 0 4.8
TR 0] 06 0 0 0 0 01936 0 0 0 0 0 5.8
UP 0 0 0 0 0 0 02 0972 0 0 0 0 2.6
DN 0 0 0 0| 06 0 0 0 01]974 0 0 0 2.0
IG 0 0 0 0 0 0 0 0 0 0966 0 0 34
JP 0 0 0 0 0 0 0 0] 0.1 0 0] 99 0 1.0
PW 0] 04 0 0 01] 0.1 0 0 0 0 0 0924 7.0
ar | 041]0.62]0.53(045]032]039 052|045 034|031 0.39| 046 | 0.54

new method for regular human activities classification and it shows superior classification

capability over KL-Distance and Angle Similarity methods. This performance inspires

us to develop algorithm in other research areas using Log-Sum Distance measure. In the

next chapter we develop Log-Sum Distance based algorithm to identify repetitive muscle

contractions using EMG recording.
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Table 4.13: Performance of proposed Log-Sum Distance algorithm without threshold values for WARD

database

SS ST| LD| WF| WL | WR| TL| TR| UP| DN | JG| JP| PW

SS | 100 0 0 0 0 0 0 0 0 0 0 0 0
ST | 8.75 | 91.25 0 0 0 0 0 0 0 0 0 0 0
LD 0 751925 0 0 0 0 0 0 0 0 0 0
WF 0 0 01958 29| 1.3 0 0 0 0 0 0 0
WL 0 0 0 01976 | 17| 02 0 0 0 0 0] 05
WR 0 0 0 0] 141984 0 0 0 0 0 0] 02
TL 0 0 0 0 0 0988 | 1.2 0 0 0 0 0
TR 0 0 0 0 0 0 21979 0 0 0 0 0
[8)5 0 0 0 0] 02 0 0 0[988 | 0.8 0 0] 02
DN 0 0 0] 12| 0.1 0 0 0| 0.1]098.6 0 0 0
IG 0 0 0 0 0 0 0 0 0 0| 100 0 0
JP 0 0 0 0 0 0 0 0 1.3} 03 0984 0
PW 0 0 0 0 0] 28 0] 02 0 0 0 01]97.0
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Table 4.14: Performance of proposed Log-Sum Distance algorithm with threshold values for WARD database

SS| ST| LD| WF| WL | WR| TL| TR| UP| DN | JG| JP| PW | unclassified
SS | 953 0 0 0 0 0 0 0 0 0 0 0 0 4.7
ST 01902 0 0 0 0 0 0 0 0 0 0 0 9.8
LD 0] 01925 0 0 0 0 0 0 0 0 0 0 7.4
WF 0 0 019438 0 0 0 0 0 0 0 0 0 5.2
WL 0 0 0 0196.7 0 0 0 0 0 0 0 0 33
WR 0 0 0 0 01]954 0 0 0 0 0 0] 0.1 4.5
TL 0 0 0 0 0 01968 0 0 0 0 0 0 32
TR 0 0 0 0 0 0 01959 0 0 0 0 0 4.1
Up 0 0 0 0 0 0 0 09838 0 0 0 0 1.2
DN 0 0 0] 0.1 0 0 0 0| 0.1]96.5 0 0 0 33
IG 0 0 0 0 0 0 0 0 0 0| 100 0 0 0
JP 0 0 0 0 0 0 0 0] 0.1 0 01978 0 2.1
PW 0 0 0 0 0 0 0 0 0 0 0 01962 3.8
ap | 038 1 0.61 | 0.57 | 043 | 0.34 | 042 | 0.50 | 0.47 | 0.31 | 0.36 | 0.24 | 0.35 | 0.37
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CHAPTER 5

Muscle Contractions Detection from EMG
Recordings

In the previous chapter, we presented Log-Sum Distance measure, ADL identification
algorithms using Lo-Sum Distance, and extensive experimental evaluations of these algo-
rithms using two datasets. In this chapter, we use Log-Sum Distance Measure for locating
rhythmic repetitive muscle contractions in one or multiple muscles from EMG singnals.
Also, we propose a method for identifying the muscle contracts before other muscles; the

the muscle that contracts first, probably, triggers contractions of other muscles.

5.1 Introduction to the problem

Individual paralyzed because of spinal cord injury can be affected by different kind of
involuntary muscle activities. Rhythmic repetitive muscle contractions within short period
of time are one of the involuntary muscle activities that might interfere with the SCI indi-
vidual’s normal living. By analyzing long-term EMG recordings of the paralyzed muscle,
it might be possible to measure the muscle contraction frequencies, durations, co-activity
and also their severity.

Over the past few decades, a large number of studies have been dedicated to involun-

tary muscle activities..Many of them have used EMG recordings and for these they have
78
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developed techniques for analysis of EMG signals [63]. EMG recordings have been used

to identify spasms, motor unit activities, durations of spasms, number of contractions, start
and end of contractions etc. However, these studies have used EMG-signals of a single
channel. In the case of EMG data from channels, signal from each channel is analyzed at
a time. We have review research on involuntary muscle activities using EMG recordings in
Section 2.3.

To determine the characteristics of involuntary muscle activities, particularly how com-
mon they are, and the prevalence of different types of contractions, long-term (24-h) elec-
tromyographic recordings are effective. These long-term recordings generate large datasets,

and multiple channels of EMG only compound the amount of data that must be processed.

5.1.1 Related Review of Involuntary Muscle Contractions Research

As described by Christine et. al in their research [10, 11, 64], involuntary muscle con-
tractions or muscle spasms are quite common in SCI individuals. It may occur throughout
the day and / or night, and can be uncomfortable and hamper regular normal living of the
paralyzed individual. There are three types of muscle spasms: (i) Unit, (i¢) Tonic, and
(737) Clonus [10]. Unit and tonic spasms are most common types of spasms, but clonus
spasm also prevalent and interfere with the paralyzed person’s normal activities. Fortu-
nately, clonus spasms have different type of contraction patterns in the EMG recordings
and require special processing to detect it. In this research, we focus on detection of the
contraction patterns that are characteristics of clonus spasms. In the rest of the dissertation,
repetitive contractions observed in clonus spasms are referred to as contractions.

Chaithanya et al [11] has defined clonus spasms as repetitive contractions followed by

periods of relative muscle silence and in the EMG recording it appears as bursts of EMG.
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They identify clonus spasms using Morlet wavelet filtering and then measures different
statistical properties of those spasms. Among different types of filter they have used, non-
linearly scaled wavelet filter of 74.8-193.9 Hz frequency band gave the best results. In
their analysis they found that duration of one clonus spasm spans between 1.1s to 43.4s.
They found that envelope of EMG signal frequencies range from 4 H z to 12H z for a EMG
bursts. Also, they found that each repetitive contractions or EMG burst has duration be-
tween 40ms to 90ms. In our data preprocessing, we use non-linearly scaled wavelet filter
before detection of EMG signal envelops, which is similar to the process described in [11].

In the EMG recording one burst of EMG represents one repetitive contraction region
(see Fig. 5.1). So, in the EMG recording a clonus is represented by multiple bursts of EMG
and there is a silent period between two consecutive EMG bursts. In this research we are

interested in those locations where multiple bursts of EMG appear in the EMG recordings.

100ms

Figure 5.1: An example of the EMG bursts. Here we have 5 EMG bursts in this example. Each EMG burst is

repetitive muscle contractions and between two EMG bursts there is a silent region.

5.1.2 Problem Statement

A Spinal cord injured individual can get affected by involuntary rhythmic repetitive
muscle contractions in only one muscle or across multiple muscles at the same time. In

EMG . recording this rhythmic repetitive muscle contractions is shown as EMG bursts.
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Given data from multiple muscles EMG recordings from an SCI individual, we address
two problems: (i) How to detect presence of EMG bursts region in one or more channels
of EMG recordings. (ii) If an identified region has EMG bursts in multiple channels, how
to identify the channel that has the first EMG burst.

The proposed solution to first problem has three steps: (¢) data preparation for feature
extraction (Section 5.3.1), (#¢) feature extraction (Section 5.3.2), and (¢¢7) Log-Sum dis-
tance computation and its application to identify locations of EMG bursts (Section 5.3.4).
Our algorithm for solving second problem — identification of EMG channel that has first

contraction — utilizes envelops of EMG signals and the Log-Sum distance (Section 5.3.4).

5.2 Eigenvalue Decomposition for Feature Extraction

Let X = [X;, Xy, .....X,,] be a matrix of n rows and m columns, where each X; =
[xlj, Toj, xnj]T, for 1 < j < m,isacolumn of n elements. Let A is a square symmetric
matrix.

A=XTX:AecR™™ (5.1)

A nonzero eigenvector z of a square matrix A is defined by the following property:
Az = Mz (5.2)

Every square symmetric matrix is orthogonally diagonalizable. And since AT = (XTX)T =
(X)T(XT)T = XTX = A. Then when we decompose A for eigenvalues we get the fol-
lowing:

A=ZANZ" (5.3)
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Where Z and A represent orthogonal and diagonal matrices respectively. As A is posi-
tive symmetric matrix, their eigenvalues are nonnegative and ordered from high to low, and
first eigenvalue is the largest value.

Now the singular value decomposition of X (n x m) can be written as:
X =Usv" (5.4)

Here, when n > m then U (n x m) and V' (m x m) are orthogonal matrices and S
(m x m) is a diagonal matrix. Now if we consider the equation 5.1 using equation 5.3 and

5.4, we get the following relationship between singular values and eigenvalues [65].
A=XTX =vsTutusvt =vs*vTt = ZzazT (5.5)

The above eigenvalue is the alternative of the specific component. It is same as the
squared singular value of the specific component. In the next section, we use these eigen-
values as the feature vector in our proposed Log-Sum Distance based EMG bursts algo-

rithm.

5.3 Algorithm to Detect EMG Bursts

5.3.1 Data Preparation for Feature Extraction

In the data preparation phase we apply short-term Fourier transforms (STFTs) and
wavelet filter on the each individual channel of EMG recordings. First, we use SIFTs to fil-
ter out high and low frequencies from our input EMG signals. Then we use a non-linearly
scaled Morlet wavelet filter to obtain the EMG envelope. For wavelet we have used the
pass-band filter of 74 - 194 Hz [11]. Figure 5.2 shows an example of the enveloped EMG

data..We.use EMG recording envelops for extracting features as discussed the next section.
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4+

-/

100 ms

Figure 5.2: An example of EMG envelope.

5.3.2 Feature Extraction from EMG-Signal Envelops

We extract features from EMG data envelop. From given EMG recording envelops
from m channels, n consecutive samples are selected from each channel to create a n x m
matrix for. For our case n >> m. We use an overlap window of w to get the next matrix.

We use Algorithm 5 to extract features from EMG data envelop. Input to the algorithm
is X =< XM, X® ... X® > where p is the number of matrices of size n x m from
EMG recording envelops. We use equation (5.1) to get the square symmetric matrix A
and then using equation (5.5) we compute the diagonal matrix A and from there we get the

eigenvector z(V. Values of eigenvector z( are positive and ordered from high to low, and
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first eigenvalue is the largest value. And z represents the sequence of all eigenvectors

z=<z0 @ 0 e (5.6)

Algorithm 5 Calculate Eigenvectors (z)

1: procedure EXTRACTFEATURES

2: Input: X =< XU, xX@ X0® >

3 Output: z = {z® O -0}

4. foreach X ¢ X

5 Compute A® from X @ using Equation (5.1)
6: Compute 2 from Equation (5.5)

7: end procedure

Algorithm 6 Compute Log-Sum Distance (Dyp)
1: procedure COMPUTELOGSUMDISTANCE

2: Input: z = {z(l), A 7Z(p)}
3: Output: Dip =< d(L%, d(LQZ)), SRR d(l?gl) >
4: fori=1:p—1

)

5 Compute d\'}, using Log-Sum Distance Equation (4.14) from z® and z(+1)

6: end procedure

5.3.3 Log-Sum Distance Algorithm to Detect EMG Bursts Locations

In the first phase of EMG Bursts location detection, we use Algorithm 6 to get the Log-
Sum Distance between two adjacent matrix’s eigenvectors. It takes eigenvector sequence

z as an input and outputs sequence of distances Dy,p. Two adjacent eigenvectors z(*) and
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201 are used to compute their Log-Sum distance dg}). Thus, a sequence of Log-Sum
distances, Dy p, are obtained.

Figure 5.3 displays an example of 8 seconds of EMG recordings from five EMG chan-
nels, envelops of the signals, and corresponding Log-Sum distances. All the readings in the
figure are normalized for the ease of presentation. Green plotted line indicates the Log-Sum
Distances. It shows that Log-Sum distances higher where EMG bursts occur. In the next
phase, we search through all the Log-Sum Distances, Dy p, to find these higher Log-Sum

distance regions to locate the EMG bursts.

1
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Figure 5.3: Log-Sum distance for the EMG recordings

In the second and final phase, we search though each d(ﬁ, from the start position to
detect EMG bursts locations. All the steps involve to detect EMG bursts locations from

Log-Sum distance values Dy, are shown in Fig 5.4. For this purpose, we take Log-Sum
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Get Log-Sum Distance LD

For Each 5 minutes of Log-Sum Distance,
set all the threshold and make those q
locations positive that pass the threshold.

D Now take 1 second of location data
and count number of positive
locations

v

if count is greater than 15 then mark
that region

v

For next second take half a seconds
overlap with the previous one.

v

Take the next 5 minutes with half a second
overlap with the previous one.

Mark all the EMG bursts locations

Figure 5.4: EMG bursts detection flowchart from Log-Sum Distance values

distance for each 5 minutes window of data and put thresholds for the Log-Sum Distance
values. All the values d(ﬁ) above the threshold value are the regions where we have active
EMG signals, motor unit, or muscle contractions. So, we mark above the threshold value
locations as positive and bellow the threshold value locations as zero. In the case of EMG
bursts, all the higher Log-Sum Distance values are closer to each other, because lots of
EMG activities happen around EMG bursts (see Fig. 5.3). Now, among those values that
have passed the threshold, we search for the consecutiveness around them. For this, we
go over one second of Log-Sum Distance value locations at a time to find the clusters of
positive locations. If one second of Log-Sum Distance values have at least 15 positive

locations, we mark that region as EMG bursts region. Also, for the next consecutiveness
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search, we keep an overlap of half seconds. This increases the resolution of the search
and help us to detect long-duration EMG bursts. Figure 5.5 shows a detected EMG bursts

region and it is bounded inside the red curve.

EMG Bursts Region

1V (Normalized)
o
Il
w

/\A'M"kmw LogSum
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I I I I I I I I I I I
219 2.191 2.192 2.193 2.194 2.195 2.196 2.197 2.198 2.199 2.2
Time (ms) %108

Figure 5.5: A region with EMG bursts from 5" hour between 36.58 - 36.65 minutes

5.3.4 Identifying the Channel That has the First EMG Burst

In the previous Section, we identify the EMG bursts locations in one or more channels
of EMG recordings. Now an algorithm is presented to identify the channel that has the
first EMG burst. We consider one identified EMG bursts region at a time. To identify start
of the EMG bursts, we take one identified EMG bursts region at a time and then process

each channel’s EMG data separately. First, we pinpoint the start of the EMG bursts in each
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individual channel. For this we use the EMG data envelop (Section 5.3.1). If a channel has
EMG activities and the largest peak is within the area where frequency range is from 4 to
12 Hz we identify that channel has EMG bursts. We select the start time of the first EMG
burst as the EMG bursts start time. Thus, we mark all the start time in all the channels
where we have EMG bursts in that identified region. Finally, we identify the channel that
has the lowest start time as the channel that has the first EMG burst in the region. Figure 5.6

shows the marked start positions of a EMG bursts region. Here the channel 2 has the first

EMG burst in that region.
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Figure 5.6: A EMG bursts with start locations marked in each channel. It is taken from 5" hour between

21.23 - 21.29 minutes
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5.4 Empirical Evaluation

5.4.1 Data Collection from Subjects

In our experiment we use the data that has been collected by Chaithanya and this data
collection process is described in his thesis [66]. This data has been collected from spinal
cord injured individual. EMG data from leg muscles was collected from seven different
individuals. EMG recording was done from eight different leg muscles over 24-hours pe-
riod for each individual. This data has the sampling rate of 1000H z per channel. For the
evaluation of our proposed algorithm and methods we only used part of the EMG data from

five different leg muscles. We have used data from channels 1,2, 3,4, and 8.

5.4.2 Performance Evaluation

Accuracy of our algorithm is calculated using the Equation (5.7). A person has gone
over the data and manually counted the number of EMG bursts regions in one or multiple
channels together and number of EMG bursts region in each channel. When our algorithm
detect a EMG bursts location correctly we call it True Positive. False Positive happens
when algorithm identify a EMG bursts but there is no EMG bursts in that region. When

algorithm fails to identify a true EMG bursts location we denote that as Missed.

ACCUTCLCZ/ = NTruePositive/<NTruePositive + NFalsePositive + NMissed) (5 7)

Total EMG Bursts Regions: Table 5.1 shows the number of total EMG bursts regions
identified in one or more channels using our algorithm for the five hours of data (from hour

3 to 7 from subject number 6). It also demonstrates that our method has accuracy of 79.3%.
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we missed 11 EMG bursts regions out of 279. Our method has detected 59 false positive

EMG bursts regions.

Table 5.1: Total EMG bursts region count and accuracy

Manual Count Detected by Missed by Log-Sum | Log-Sum Method’s
Log-Sum Method Method Accuracy(%)
279 327 11 79.3

Identification of the Channel that Starts the First EMG Burst:

Table 5.2 shows num-

ber of times each of the channel has the EMG bursts region. It also shows the number of

times each channels has first EMG burst in the identified regions. From the first row we

observe that channel 8 has highest number of EMG bursts regions, 243 times and from the

second row we note that it also has highest number of the first EMG burst, 148. Channel

2 has 106 first EMG burst among its 124 EMG bursts regions. First EMG burst has never

been in channel 4 though it has 6 EMG bursts regions.

Table 5.2: Identify the muscle (channel) that triggers contractions in other muscles

C=1C=2|C=3|C=4|C=8

Number of Contractions Regions

152 124 95

6 243

Starts First Contraction in the Regions

12 106 61

0 148

5.4.3 Execution Time

In this experiment we use computer that has a Intel Core 7-6800/K CPU that has

3.40G H z clock, 64G B of memory, and running 64-bit Windows 7 Enterprise operating

www.manaraa.com



91
system. We use MATLAB R2016b for programming. We process one hour of data from

each of the five channels at a time, which is five hours of data. It takes us on an average
2.43 £ 0.3 minutes to process this 5 hours of data. If we extrapolate this for 24 hours of
data for each of the five channels, it is will be around 63.13 £ 7.2 minutes (24 X 5 hours

of data).

5.5 Conclusion

Identification algorithm of EMG bursts regions in one or more channels gave us a very
promising results. Here we have used the Log-Sum Distance measure, presented in Chapter
4, to develop our detection algorithm. It shows a great accuracy to detect EMG bursts
across multiple channels of EMG recording from SCI individuals. In this research we were
also able to identify accurately those channels that has the first EMG burst in the rhythmic
repetitive contractions regions.

This EMG bursts or repetitive muscle contractions, also known as clonus spasm, can
hamper everyday living and activities for paralyzed SCI individuals. Knowing how com-
mon they are, their occurring time as well as their duration is expected to help the researcher
and/or physicians to mitigate its negative influences on the SCI individuals.

This identification of channel that has the first muscle contractions is expected to be
a new perspective for investigating into the involuntary muscle activity problem for SCI
individuals. It may help those who want to understand how involuntary activities in one

muscle might take a role for involuntary activities in other muscles.
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CHAPTER 6

Conclusion

In this dissertation, we have developed novel algorithms to identify human fall and
other activities, and to detect repetitive muscle contractions. We have presented novel
learning models as well as some existing state-of-the art learning models for classification
and identifying patterns from different types of sensor datasets. We have processed motion
sensors data and EMG recordings from muscles to identify different events and muscle
contraction locations, respectively. Extensive evaluation of our proposed algorithms and
methods demonstrated that they are very effective.

First, we presented Human fall detection using motion sensors data in Chapter 3. We
are able to detect fall events with 100% accuracy using semi-automatic feature extraction
technique and two layer classification networks. Our one and two layers of classification
networks are composed of neural network and softmax regression. We also use those to
monitor activities of daily livings. ADLs were identified with two layered network with
100% accuracy.

Our success with fall and ADL detection with existing state-of-the art learning meth-
ods motivated us to develop new learning models. We presented our Log-Sum Distance
measures in Chapter 4. We use the proposed Log-Sum Distance measure to develop algo-

rithms for recognition of human activities from motion data. The sequences of m positive

92

www.manaraa.com



93

numbers we used are residual sum of squares errors produced from modeling m motion
time-series with multiple linear regression method. To reduce incorrect classification, we
define a threshold test and use it in our proposed novel algorithm. We have defined an opti-
mization function and used it for computing optimal threshold values. Extensive evaluation
of our activity detection algorithm with two different sets of datasets show increased activ-
ity recognition rates and decreased incorrect classification rates compared to other existing
methods. In one dataset, proposed algorithm detects all activities with 100% accuracy and
in the another dataset, it detects all activities with 99% or higher accuracy.

In Chapter 4, we have achieved great accuracy in ADLs identification with Log-Sum
Distance based learning methods. This inspired us to develop algorithm to detect repetitive
muscle contractions from long-term EMG recordings using Log-Sum Distance measure.
We presented the novel method to identify and analyze repetitive muscle contractions in
one or more channels using EMG datasets of SCI individuals in Chapter 5. Our empirical
evaluation has shown high accuracy in detection of repetitive contraction regions from
EMG datasets. We also detect the start of contraction events on each channel for each
detected repetitive contractions region. This way we were able to identify those channels
(muscles) that are triggering first muscle contraction in the identified regions. The muscle
contractions region and co-activity finding problem and its solution expected to opens a
new opportunity to identify effect and/or influence spasm one channel to other channels.

Log-Sum Distance measure showed a great promise for different classification and
identification problems. It is robust, easy to use, and computationally efficient to work
on different sensors data. It adds a new dimension to process sensor data in a efficient
way. It opens possibility to use Log-Sum Distance measure to identify valuable patterns

and information in other types of sensor data.
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